

Institut für Umweltanalytik · Oberndorfer Str.1· 91096 Möhrendorf

Zweckverband zur Wasserversorgung

Betzensteingruppe Herr Otto Alter Brunnen 2

91282 Betzenstein

Baucis Funke Oberndorfer Straße 1 91096 Möhrendorf 09131 41071 kontakt@funkelabor.de

Wasser Boden Luft Feuer

30. Juni 2025 25.06208

Ortsnetz Betzenstein

Trinkwasseruntersuchung nach Trinkwasserverordnung

(TrinkwV in der Neufassung vom 20.Juni 2023)

Probenkennzeichnung

Probenart Trinkwasser

Ortsnetz Betzenstein Bezeichnung

Laboreingang 10.06.2025 : 1230 0472 00886 Objektkennzahl

Wasserversorgungsunternehmen : ZV Betzensteingruppe

Art der Wasserversorgung zentrale Wasserversorgung (>10m³/d)

Zapfhahn Verbraucher Position im Leitungsnetz

Desinfektion keine Art der Aufbereitung keine Zusatzstoffe für Aufbereitung keine

Probenahme

Probenahmeort Betzenstein, Hauptstr. 68

Entnahmestelle Freibad, Fußdusche, rechter Hahn

Probenehmer J.-L. Fournes, IfU

Probenahmedatum 10.06.25 Probenahmezeit 11:20

Probenahmetechnik Mikrobiol. DIN EN ISO 19458: 2006/12 Zweck a

Probenhametechnik Chemie DIN ISO 5667-5:2011/02

Probenahmetechnik für Zufallsstichprobe

Schwermetalle Pb, Cu, Ni

Vor-Ort-Parameter Geschmack, Leitfähigkeit, pH-Wert, Sauerstoff,

Wassertemperatur

Analysenverfahren

Untersuchungszeitraum 10.06.2025 bis 27.06.2025

Die Messunsicherheiten der angewandten Analysenverfahren Messunsicherheit

liegen innerhalb der nach der TrinkwV zulässigen Fehlerbereiche

Die Nachweisgrenzen der angewandten Analysenverfahren Nachweisgrenzen

entsprechen den Bedingungen der TrinkwV Anlage 5.1

Institut für Umweltanalytik Baucis Funke Akkreditiertes Prüflabor DAkkS D-PL-21277-01-00 Private Sachverständige für die Wasserwirtschaft Untersuchungsstelle nach § 40 TrinkwV

Zertifiziertes Prüflabor, AQS Bayern, AQS-Nr. 05/008/96

Zulassung nach § 44 Infektionsschutzgesetz

Mikrobiologische Untersuchungen (TrinkwV Anlage 1 und Anlage 3)

Parameter		Einheit	Messwert	Grenzwert	Analysenmethode
Koloniezahl bei 22 °C	KBE	1/ml	0	20/100/1000 1)	TrinkwV, §43 Abs. 3/1
Koloniezahl bei 36 °C	KBE	1/ml	0	100	TrinkwV, §43 Abs. 3/1
Escherichia coli	KBE	1/100ml	0	0	DIN EN ISO 9308-1:17/09
Enterokokken	KBE	1/100ml	0	0	DIN EN ISO 7899-2:00/11
Coliforme Keime	KBE	1/100ml	0	0	DIN EN ISO 9308-1:17/09
Clostridium perfringens		1/100ml		0	
Legionellen		1/100ml		<100 2)	

¹⁾ 20 / ml nach Abschluss der Aufbereitung im desinfizierten Trinkwasser

in der Regel nicht mehr erhöht

TrinkwV Anlage 2.1 Chemische Parameter, deren Konzentration sich im Verteilungsnetz einschließlich der Trinkwasserinstallation

Parameter	Symbol	Einheit	Messwert	Grenzwert	Analysenmethode
Benzol		μg/l	< 0,3	1,0	DIN 38407-F43:14/10
Bor	В	mg/l	< 0,06	1,0	DIN EN ISO 17294-2: 17/01
Bromat	BrO3-	mg/l	< 0,0015	0,010	DIN EN ISO 15061-D34:01/12
Chrom	Cr	mg/l	< 0,0002	$0,0250^{1)}$	DIN EN ISO 17294-2: 17/01
Cyanide (gesamt)	CN	mg/l	< 0,005	0,050	DIN 38405-D13:11/04
Fluorid	F-	mg/l	0,0428	1,5	DIN EN ISO 10304-1-D20:09/07
Nitrat	NO_3^-	mg/l	13,3	50	DIN EN ISO 10304-1-D20:09/07
Quecksilber	Hg	mg/l	< 0,0001	0,0010	DIN EN ISO 17294-2: 17/01
Selen	Se	mg/l	< 0,0001	0,010	DIN EN ISO 17294-2: 17/01
Uran	U	mg/l	0,0002	0,010	DIN EN ISO 17294-2: 17/01
1,2-Dichlorethan		μg/l	< 0,7	3,0	DIN 38407-F43:14/10
Trichlorethen		μg/l	< 1,0	10	DIN 38407-F43:14/10
Tetrachlorethen		μg/l	< 1,0	10	DIN 38407-F43:14/10
Summe Tri- und Tetrachlorethen		μg/l	0	10	Summe der nachgewiesenen
Per- und Polyfluorierte Alkylsub	stanzen				*)
Perfluorbutansäure (PFBA)		μg/l	< 0,002		DIN EN 17892:2024-08
Perfluorpentansäure (PFPeA)		μg/l	< 0,001		DIN EN 17892:2024-08
Perfluorhexansäure (PFHxA)		μg/l	< 0,001		DIN EN 17892:2024-08
Perfluorheptansäure (PFHpA)		μg/l	< 0,001		DIN EN 17892:2024-08
Perfluoroctansäure (PFOA)		μg/l	< 0,001		DIN EN 17892:2024-08
Perfluornonansäure (PFNA)		μg/l	< 0,001		DIN EN 17892:2024-08
Perfluordecansäure (PFDA)		μg/l	< 0,001		DIN EN 17892:2024-08
Perfluorundecansäure (PFUnA)		μg/l	< 0,001		DIN EN 17892:2024-08
Perfluordodecansäure (PFDoA)		μg/l	< 0,002		DIN EN 17892:2024-08
Perfluortridecansäure (PFTrDA)		μg/l	< 0,002		DIN EN 17892:2024-08
Perfluorbutansulfonsäure (PFBS)		μg/l	< 0,001		DIN EN 17892:2024-08
Perfluorpentansulfonsäure (PFPeS	S)	μg/l	< 0,001		DIN EN 17892:2024-08
Perfluorhexansulfonsäure (PFHxS	S)	μg/l	< 0,001		DIN EN 17892:2024-08
Perfluorheptansulfonsäure (PFHp	S)	μg/l	< 0,001		DIN EN 17892:2024-08
Perfluoroctansulfonsäure (PFOS)	,	μg/l	< 0,001		DIN EN 17892:2024-08
Perfluorononansulfonsäure (PFNS	S)	μg/l	< 0,001		DIN EN 17892:2024-08
Perfluordecansulfonsäure (PFDS)		μg/l	< 0,001		DIN EN 17892:2024-08
Perfluoro-1-Undecansulfonsäure		μg/l	< 0,001		DIN EN 17892:2024-08
(PFUdS)		, .			
Perfluordodecansulfonsäure (PFD	oS)	μg/l	< 0,001		DIN EN 17892:2024-08
Perfluoro-1-tridecansulfonsäure	,	μg/l	< 0,001		DIN EN 17892:2024-08
(PFTrDS)		. 0	•		
Summe PFAS 4		μg/l	0	0,020 2)	PFOA+PFNA+PFHxS+PFOS
Summe PFAS 20		μg/l	0	0,10 3)	Summe der nachgewiesenen

 $[\]overline{^{(1)}}$ 0,025 mg/l gilt bis 11.1.2030, danach 0,0050 mg/l

 $^{100\,/\,\}mathrm{ml}\,$ am Zapfhahn des Verbrauchers

^{1000 /} ml bei Einzelversorgungen technischer Maßnahmewert

²⁾ Grenzwert gilt ab 12.1.2028

³⁾ Grenzwert gilt ab 12.1.2026 *) Analytik im Unterauftrag Analytik Institut Rietzler GmbH, Fürth

TrinkwV Anlage 2.1 (Fortsetzung)

Parameter	Symbol Einhe	it Messwert	Grenzwert	Analysenmethode
Pflanzenschutzmittelwirkstoffe und	d Biozidprodul	ktwirkstoffe		*)
AMPA	μg/l	,	0,10	
2,4-D	μg/l	< 0.02	0,10	DIN 38407-F36:14/09
2-Hydroxyatrazin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Aclonifen	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Amidosulfuron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Atrazin	μg/l	0,021	0,10	DIN 38407-F36:14/09
Azoxystrobin	μg/l	< 0,021	0,10	DIN 38407-F36:14/09
Beflubutamid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Bentazon	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Bixafen	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Boscalid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Bromacil	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Bromoxynil	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Carbendazim		< 0,02	0,10	DIN 38407-F36:14/09
Carbetamid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Carbeiamid Chloridazon	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Chloridazon Chloridazon, desphenyl-B	μg/l	> 0,0 ∠	3,0**	211.3010/130.17/0/
	μg/l		3,0**	
Chloridazon, methyldesphenyl-B1	μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Chlortoluron	μg/l	< 0.02	0,10	DIN 38407-F36:14/09 DIN 38407-F36:14/09
Clodinafop-propargyl	μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Clomazone	μg/l	< 0.02	0,10	DIN 38407-F36:14/09 DIN 38407-F36:14/09
Clopyralid	μg/l	< 0.05		DIN 38407-F36:14/09 DIN 38407-F36:14/09
Clothianidin	μg/l	< 0,02	0,10	
Cyflufenamid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Cyproconazol	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Desethyl-Atrazin	μg/l	0,037	0,10	DIN 38407-F36:14/09
Desethyl-Desisopropylatrazin	μg/l	0,025	0,10	DIN 38407-F36:14/09
Desethylsimazin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Desethylterbuthylazin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dicamba	μg/l	< 0,05	0,10	DIN 38407-F36:14/09
Dichlorprop	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
2,6-Dichlorbenzamid	μg/l		0,10	
Difenoconazol	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Diflufenican	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dimefuron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dimethachlor	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dimethenamid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dimethylsulfamid	μg/l		0,10	
Dimethoat	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dimethomorph	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dimoxystrobin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Diuron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Epoxiconazol	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Ethidimuron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Ethofumesat	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fenoxaprop	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fenpropidin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fenpropimorph	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Flazasulfuron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Flonicamid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Florasulam	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fluazifop	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fluazinam	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fludioxonil	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Flufenacet	μg/l	< 0,02	0,10	DIN 38407-F36:14/09

TrinkwV Anlage 2.1 (Fortsetzung)

Parameter	Symbol Einheit	Messwert	Grenzwert	Analysenmethode*
Pflanzenschutzmittelwirkstoffe und	-		0.10	*) DDI 29407 E26.14/00
Flumioxazin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fluopicolide	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fluopyram	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Flupyrsulfuron-methyl	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fluroxypyr	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Flurtamon	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Flusilazol	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fluxapyroxad	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Foramsulfuron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Glyphosat	μg/l	< 0,05	0,10	DIN ISO 16308:17/09
Haloxyfop	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
mazalil	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
midacloprid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
odosulfuron-methyl	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
oxynil	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
prodion	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
soproturon	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
sopyrazam	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
soxaben	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Kresoxim-methyl	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Lenacil	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Mandipropamid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
маниргоранни МСРА	μg/l μg/l	< 0,02	0,10	DIN 38407-F36:14/09
		< 0,02	0,10	DIN 38407-F36:14/09
Mecoprop Mesosulfuron-methyl	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
	μg/l		0,10	DIN 38407-F36:14/09
Mesotrion	μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Metalaxyl	μg/l	< 0.02		DIN 38407-F36:14/09
Metamitron	μg/l	< 0.02	0,10	
Metazachlor	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metazachlor BH479-4	μg/l		3,0**	
Metazachlor BH479-8	μg/l		3,0**	DD1 20 105 F2 (14/0)
Metconazol	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Methiocarb	μg/l	< 0,05	0,10	DIN 38407-F36:14/09
Methoxyfenozid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metobromuron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metolachlor	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metosulam	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metribuzin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metsulfuron-methyl	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Myclobutanil	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Napropamid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Nicosulfuron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Penconazol	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Pendimethalin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Pethoxamid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Picolinafen	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Picoxystrobin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Pinoxaden	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Pirimicarb		< 0,02	0,10	DIN 38407-F36:14/09
Prochloraz	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Propamocarb	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
-	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Propaquizafop	μg/l		0,10	DIN 38407-F36:14/09
Propazin	μg/l	< 0.02		
Propiconazol	μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Propoxycarbazon	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Propyzamid	μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Proquinazid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Prosulfocarb	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Prosulfuron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Prothioconazol	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Pyrimethanil	μg/l	< 0,02	0,10	DIN 38407-F36:14/09

TrinkwV Anlage 2.1 (Fortsetzung)

Parameter	Symbol	Einheit	Messwert	Grenzwert	Analysenmethode
Pflanzenschutzmittelwirkstoffe u	nd Biozid _l	produktw	virkstoffe		*)
Pyroxsulam	•	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Quinmerac		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Quinoclamin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Quinoxyfen		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Simazin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Spiroxamine		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Sulcotrion		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Tebuconazol		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Tebufenozid		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Tebufenpyrad		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Terbuthylazin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Tetraconazol		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Thiacloprid		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Thiamethoxam		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Thifensulfuron-methyl		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Topramezone		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Triadimenol		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Triasulfuron		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Tribenuron-methyl		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Triclopyr		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Trifloxystrobin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Triflusulfuron-methyl		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Triticonazol		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Tritosulfuron		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Summe PBSM		μg/l	0,083	0,50	Summe der nachgewiesenen

^{*)} Analytik im Unterauftrag Analytik Institut Rietzler GmbH, Fürth
**) gesundheitlicher Orientierungswert für nicht-relevante Metaboliten (Liste UBA 2019); diese gehen nicht in die Summe PSM und Biozide ein

TrinkwV Anlage 2.2 Chemische Parameter, deren Konzentration im Verteilungsnetz einschließlich der Trinkwasserinstallation ansteigen kann

6/7

Parameter	Symbol	Einheit	Messwert	Grenzwert	Analysenmethode
Antimon	Sb	mg/l	< 0,0001	0,0050	DIN EN ISO 17294-2: 17/01
Arsen	As	mg/l	0,0001	0,010 4)	DIN EN ISO 17294-2: 17/01
Blei	Pb	mg/l	< 0,0005	0,0100 5) 6)	DIN EN ISO 17294-2: 17/01
Cadmium	Cd	mg/l	< 0,0001	0,0030	DIN EN ISO 17294-2: 17/01
Kupfer	Cu	mg/l	< 0,0045	2,0 5)	DIN EN ISO 17294-2: 17/01
Nickel	Ni	mg/l	< 0,0001	0,020 5)	DIN EN ISO 17294-2: 17/01
Nitrit	NO_2^-	mg/l	< 0,010	0,50	DIN EN ISO 10304-1-D20:09/07
Nitrat/50 + Nitrit/3		Ü	< 0,27	1	TrinkwV
Chlorat		mg/l		$0,070^{7)}$	
Chlorit		mg/l		0,20	
Trichlormethan		μg/l			
Bromdichlormethan		μg/l			
Dibromchlormethan		μg/l			
Tribrommethan		μg/l			
Summe Trihalogenmethane		μg/l		50 / 10 8)	Summe der nachgewiesenen
Benzo(b)fluoranthen		μg/l	< 0,02		DIN 38407-F39:11/09
Benzo(k)fluoranthen		μg/l	< 0,02		DIN 38407-F39:11/09
Indeno(123cd)pyren		μg/l	< 0,02		DIN 38407-F39:11/09
Benzo(ghi)perylen		μg/l	< 0,02		DIN 38407-F39:11/09
Summe der 4 PAK		μg/l	0	0,10	Summe d. nachgew.
Benzo(a)pyren		μg/l	< 0,002	0,010	DIN 38407-F39:11/09
Bisphenol A		μg/l	< 0,1	2,5 9)	DIN EN ISO 18857-2:2012-01 (F32) mod.***

 $^{0,\!010}$ mg/l gilt bis 11.1.2036, danach $0,\!0040$ mg/l

Indikatorparameter (TrinkwV Anlage 3.1)

Parameter	Symbol	Einheit	Messwert	Grenzwert	Analysenmethode
Geruch			geruchlos	annehmbar 1)	DIN EN ISO 1622-B3-C.06/10
Geschmack			frisch	annehmbar	DIN EN ISO 1622-B3:06/10
Leitfähigkeit (bei 25°C)		μS/cm	581	2790	DIN EN 27888-C8:93/11
pH-Wert		·	7,37	6,5 bis 9,5	DIN EN ISO 10523:12/04
Messtemperatur(pH)		°C	19,2		DIN 38404-C4:76/12
Calcitlösekapazität	CaCO3	mg/l	-25,62	5/10 2)	DIN 38404-C10/3:12/12
1		Č	kalkabscheidend		
TOC	C	mg/l	< 0,9	3)	DIN EN 1484-H3:97/08
spektr. Absorptionskoeff. 436nm		1/m	< 0,1	0,5	DIN EN ISO 7887-C1:12/04
Trübung		NTU	0,97	1,0 4)	DIN EN ISO 7027-C21:16/11
Chlorid	Cl-	mg/l	5,27	250	DIN EN ISO 10304-1-D20:09/07
Sulfat	SO_4^{2-}	mg/l	16,6	250	DIN EN ISO 10304-1-D20:09/07
Aluminium	Al	mg/l	< 0,010	0,200	DIN EN ISO 17294-2: 17/01
Ammonium	$\mathrm{NH_4}^+$	mg/l	< 0,02	0,50	DIN 38406-E5:83/10
Natrium	Na	mg/l	1,95	200	DIN EN ISO 17294-2: 17/01
Eisen	Fe	mg/l	< 0,010	0,200	DIN EN ISO 17294-2: 17/01
Mangan	Mn	mg/l	< 0,0008	0,050	DIN EN ISO 17294-2: 17/01

Chlorgeruch bleibt unberücksichtigt

gilt für die Zufallsstichprobe und die gestaffelte Stagnationsprobe

^{0,010} mg/l gilt bis 11.1.2028, danach 0,0050 mg/l

bei zeitweise Dosierung gilt ein Grenzwert von 0,20mg/l
 50 μg/l beim Verbraucher, 10 μg/l am Wasserwerk

gilt ab 12.1.2024

^{***} nicht akkreditiert

der Grenzwert von 5mg/l gilt als erfüllt, wenn der pH-Wert >7,7 am Wasserwerksausgang ist der Grenzwert von 10mg/l gilt für die Mischung von Wässern aus zwei oder mehr Wasserwerken

ohne anormale Veränderung

am Ausgang Wasserwerk

Weitere Parameter

Parameter	Symbol	Einheit	Messwert	Grenzwert	Analysenmethode
Wassertemperatur		°C	19,2		bei der Probenahme
Calcium	Ca	mg/l	85,3		DIN EN ISO 17294-2: 17/01
Calcium	Ca	mmol/l	2,13		DIN EN ISO 17294-2: 17/01
Magnesium	Mg	mg/l	26,1		DIN EN ISO 17294-2: 17/01
Magnesium	Mg	mmol/l	1,07		DIN EN ISO 17294-2: 17/01
Kalium	K	mg/l	< 0,6		DIN EN ISO 17294-2: 17/01
Kalium	K	mmol/l	< 0,0153		DIN EN ISO 17294-2: 17/01
Härte		mmol/l	3,20		ICP (Ca+Mg)
Härtebereich			hart		Wasch- und Reinigungsmittelgesetz
			(17,9 °dH)		
Säurekapazität	$KS_{4,3}$	mmol/l	5,72		DIN 38409-H7:05/12
Sauerstoff	O_2	mg/l	7,8		DIN EN ISO 5814-G22:13/02

Beurteilung

Beurtenung	
Beurteilung, TrinkwV Anlage 1 und 3 (Mikrobiologie)	Das Trinkwasser ist aus mikrobiologischer Sicht einwandfrei und entspricht den Anforderungen der Trinkwasserverordnung.
Beurteilung, TrinkwV Anlage 2.1	Die Grenzwerte aller Parameter sind eingehalten. Der Nitratgehalt liegt in einem mittleren Bereich. Organische Schadstoffe (wie z.B. Lösemittelrückstände) sind nicht nachweisbar. Per- und Polyfluorierte Alkylsubstanzen sind nicht nachweisbar. Pflanzenschutzmittel und deren Abbauprodukte sind in Spuren nachweisbar.
Beurteilung, TrinkwV Anlage 2.2	Das Trinkwasser entspricht den Anforderungen. Schwermetalle aus dem Leitungsmaterial sind nicht nachweisbar oder nur in geringen, gesundheitlich unbedenklichen Spuren enthalten. Bisphenol A ist nicht nachweisbar.
Beurteilung, TrinkwV Anlage 3.1 (Indikatorparameter)	Das Trinkwasser entspricht den Anforderungen. Eisen und Mangan sind nicht nachweisbar. Das Wasser steht nicht im Kalk-Kohlensäure-Gleichgewicht. Es ist kalkabscheidend.
Beurteilung, TrinkwV weitere	Das Wasser wird nach dem Wasch- und Reinigungsmittelgesetz dem

Härtebereich hart zugeordnet (17,9 °dH).

Baucis Funke

& June

Parameter

Institut für Umweltanalytik · Oberndorfer Str.1· 91096 Möhrendorf

Zweckverband zur Wasserversorgung Betzensteingruppe Herr Otto Alter Brunnen 2 91282 Betzenstein Baucis Funke Oberndorfer Straße 1 91096 Möhrendorf 09131 41071 kontakt@funkelabor.de 30. Juni 2025

Ortsnetz Betzenstein

25.06208techn

Korrosionstechnische Wasseruntersuchung

Anlass und Auftrag

Die korrosionstechnische Wasseruntersuchung dient zur Feststellung der Wasserzusammensetzung und des Verhaltens gegen Installationsmaterialien

Probenkennzeichnung

Probenart : Trinkwasser

Bezeichnung : Ortsnetz Betzenstein

Laboreingang : 10.06.2025 Objektkennzahl : 1230 0472 00886 Wasserversorgungsunternehmen : ZV Betzensteingruppe

Probenahme

Probenahmeort : Betzenstein, Hauptstr. 68

Entnahmestelle : Freibad, Fußdusche, rechter Hahn

Probenehmer : J.-L. Fournes, IfU

Probenahmedatum : 10.06.25 Probenahmezeit : 11:20 Probenahmetechnik : a

Analysenergebnisse

Parameter	Symbol	Einheit	Messwert	Analysenmethoden
Summenparameter				
Färbung			farblos	qualitativ
Trübung			klar	qualitativ
Geruch			geruchlos	DIN EN ISO 1622-B3-C.06/10
Geschmack			frisch	DIN EN ISO 1622-B3:06/10
Wassertemperatur		°C	19,2	bei der Probenahme
Leitfähigkeit (bei 25°C)		μS/cm	581	DIN EN 27888-C8:93/11
pH-Wert		•	7,37	DIN EN ISO 10523:12/04
Sauerstoff	O_2	mg/l	7,8	DIN EN ISO 5814-G22:13/02
Redoxspannung	-	mV	413	DIN 38404-C6:84/05
Basenkapazität	$KB_{8,2}$	mmol/l	0,52	DIN 38409-H7:05/12
Säurekapazität	KS _{4,3}	mmol/l	5,72	DIN 38409-H7:05/12
TOC	C	mg/l	< 0,9	DIN EN 1484-H3:97/08
spektr. Absorptionskoeff. 254nm		1/m	0,97	DIN 38404-C3:05/07
spektr. Absorptionskoeff. 436nm		1/m	< 0,1	DIN EN ISO 7887-C1:12/04
Härte		mmol/l	3,20	ICP (Ca+Mg)
Chlor, frei	Cl	mg/l	<i>5,</i> 2	
abfiltrierbare Stoffe		mg/l	< 1,0	DIN 38409-H2 (0,45µm)
Feststoffe		g, 1	1,0	(ε,
Anionen				
Kieselsäure	SiO_2	mg/l	5,03	DIN 38405-D21:90/10
Carboxylate (<c3)< td=""><td>$C_2H_3O_2^-$</td><td>mg/l</td><td>0,00</td><td></td></c3)<>	$C_2H_3O_2^-$	mg/l	0,00	
Chlorid	Cl ⁻	mg/l	5,27	DIN EN ISO 10304-1-D20:09/07
Nitrit	NO_2	mg/l	< 0,010	DIN EN ISO 10304-1-D20:09/07
Nitrat	NO_3	mg/l	13,3	DIN EN ISO 10304-1-D20:09/07
Phosphor	P	mg/l	< 0,028	DIN EN ISO 17294-2: 17/01
Sulfat	SO_4^{2-}	mg/l	16,6	DIN EN ISO 10304-1-D20:09/07
Kationen				
Ammonium	$\mathrm{NH_4}^+$	mg/l	< 0,02	DIN 38406-E5:83/10
Calcium	Ca	mg/l	85,3	DIN EN ISO 17294-2: 17/01
Magnesium	Mg	mg/l	26,1	DIN EN ISO 17294-2: 17/01
Kalium	K	mg/l	< 0,6	DIN EN ISO 17294-2: 17/01
Natrium	Na	mg/l	1,95	DIN EN ISO 17294-2: 17/01
Eisen	Fe	mg/l	< 0,010	DIN EN ISO 17294-2: 17/01
Mangan	Mn	mg/l	< 0,0008	DIN EN ISO 17294-2: 17/01
Aluminium	Al	mg/l	< 0,010	DIN EN ISO 17294-2: 17/01
Arsen	As	mg/l	0,0001	DIN EN ISO 17294-2: 17/01
Blei	Pb	mg/l	< 0,0005	DIN EN ISO 17294-2: 17/01
Chrom	Cr	mg/l	< 0,0002	DIN EN ISO 17294-2: 17/01
Kupfer	Cu	mg/l	< 0,0045	DIN EN ISO 17294-2: 17/01
Nickel	Ni	mg/l	< 0,0001	DIN EN ISO 17294-2: 17/01
Zink	Zn	mg/l	0,0374	DIN EN ISO 17294-2: 17/01
Uran	U	mg/l	0,0002	DIN EN ISO 17294-2: 17/01
Berechnete Parameter				
gelöstes Kohlendioxid	CO_2	mmol/l	0,532	
Hydrogencarbonat	HCO3-	mmol/l	5,65	
Carbonat	CO3	mmol/l	0,00737	
pH-Wert nach Calcitsättigung			7,06	DIN 38404-C10/3:12/12
Calcitsättigungsindex			0,30	DIN 38404-C10/3:12/12
Calcitlösekapazität	CaCO3	mg/l	-25,62	DIN 38404-C10/3:12/12
Kationenquotient	S0	Č	0,02	(K+Na)/(2*Ca+2*Mg)
Anionenquotient	S1		0,12	(Cl+NO3+2*SO4)/KS4,3
Gerieselquotient	S2		2,31	(Cl+2*SO4)/NO3
Kupferquotient	S3		33,08	KS4,3/SO4

Beurteilung des Korrosionsverhaltens gegenüber Installationsmaterialien

Erläuterungen

In den folgenden Auswertetabellen sind die Einheiten der Messgrößen unterdrückt. Die Messgrößen haben die Einheiten wie sie in der Analysenergebnisstabelle angegebenen sind, also meist mg/l oder mmol/l. Bei den einzelnen Korrosionsarten sind Bedingungen für anzustrebenden Zuständen aufgeführt. Das sind diejenigen Bedingungen, bei denen keine Korrosion auftritt oder bei denen das Wasser eine wünschenswerte Beschaffenheit aufweist. Die einzelnen Klauseln einer Bedingung müssen alle gleichzeitig erfüllt sein (und-Verknüpfung).

Korrosive oder andere unerwünschte Zustände sind rot markiert.

Der Beurteilung liegen neben eigenen Erfahrungen unter anderem folgende Normen zugrunde. DIN 50930-6: Korrosion metallener Werkstoffe im Innern von Rohrleitungen, Behältern und Apparaten bei Korrosionsbelastung durch Wässer – Teil 6: Bewertungsverfahren und Anforderungen hinsichtlich der hygienischen Eignung in Kontakt mit Trinkwasser (Okt. 2013)

EN 12502: Korrosionsschutz metallischer Werkstoffe. Hinweise zur Abschätzung der Korrosionswahrscheinlichkeit in Wasserverteilungs- und -speichersystemen

Teil 1: Allgemeines (2004)

Teil 2: Einflussfaktoren für Kupfer und Kupferlegierungen (2004)

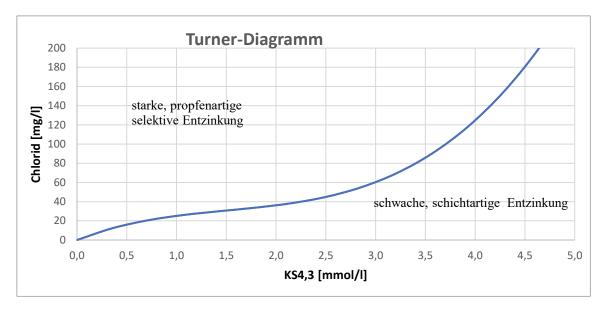
Teil 3: Einflussfaktoren für schmelztauchverzinkte Eisenwerkstoffe (2004)

Teil 4: Einflussfaktoren für nichtrostende Stähle (2004)

Teil 5: Einflussfaktoren für Gusseisen, unlegierte und niedriglegierte Stähle (2004)

4 / 12

Wasserbeschaffenheit


relevante Messwerte		Bedingungen für	Ergebnis
		wünschenswerten Zustand	Grund
		Zustanu	Grand
Hauptmineralien			Calcium-Hydrogencabonat
Säurekapazität	5,72		HCO3 = 5.72 mval/l
Chlorid			Ca = 4,265 mval/l
Nitrat			,
Sulfat			
Calcium			
Magnesium			
Kalium			
Natrium	,		
			I
Härtebereich			hart
Härte	3,20	< 1,5 weich	
		1,5 - 2,5 mittel	
		>2,5 hart	
Kalk-Kohlensäure-Gle	cichgewicht		kalkabscheidend
Calcitsättigungsindex	0,30	-0,2 bis +0,2	Calcitsättigungsindex > + 0,2)
e are recommended and a second	0,20	0,2 015 0,2	- Curricum gangaman (,2)
		'	'
Oxidationsverhältnisse		T	oxidiertes Wasser
Sauerstoff	7,8	reduziert :	sauerstoffreich
Redoxspannung	413	O2 < 1	hohe Redoxspannung
Nitrat	13,3		Nitrat
Nitrit	< 0,010	teilreduziert:	kein Nitrit
Ammonium	< 0,02	$1 \leq O2 < 4$	kein Ammonium
Eisen	< 0,010		kein gelöstes Eisen
Mangan	< 0,0008	oxidiert : O2 > 4	kein gelöstes Mangan
			I control of the second of the
			Grenzwerte bei hier untersuchten
Trinkwassergrenzwert	<u>e</u>		Grenzwerte bei hier untersuchten Parametern eingehalten.
Leitfähigkeit	581	LF < 2790	
Leitfähigkeit pH-Wert	581 7,37	pH 6,5-9,5	
Leitfähigkeit pH-Wert TOC	581 7,37 < 0,9	pH 6,5-9,5 TOC < 2	
Leitfähigkeit pH-Wert TOC Chlorid	581 7,37 < 0,9 5,27	pH 6,5-9,5 TOC < 2 Cl < 250	
Leitfähigkeit pH-Wert TOC Chlorid Nitrit	581 7,37 < 0,9 5,27 < 0,010	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5	
Leitfähigkeit pH-Wert TOC Chlorid Nitrit Nitrat	581 7,37 < 0,9 5,27 < 0,010 13,3	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50	
Leitfähigkeit pH-Wert TOC Chlorid Nitrit Nitrat Sulfat	581 7,37 < 0,9 5,27 < 0,010 13,3 16,6	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250	
Leitfähigkeit pH-Wert TOC Chlorid Nitrit Nitrat Sulfat Ammonium	581 7,37 < 0,9 5,27 < 0,010 13,3 16,6 < 0,02	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5	
Leitfähigkeit pH-Wert TOC Chlorid Nitrit Nitrat Sulfat Ammonium Natrium	581 7,37 < 0,9 5,27 < 0,010 13,3 16,6 < 0,02 1,95	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200	
Leitfähigkeit pH-Wert TOC Chlorid Nitrit Nitrat Sulfat Ammonium Natrium Eisen	581 7,37 < 0,9 5,27 < 0,010 13,3 16,6 < 0,02 1,95 < 0,010	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2	
Leitfähigkeit pH-Wert TOC Chlorid Nitrit Nitrat Sulfat Ammonium Natrium Eisen Mangan	581 7,37 < 0,9 5,27 < 0,010 13,3 16,6 < 0,02 1,95 < 0,010 < 0,0008	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05	
Leitfähigkeit pH-Wert TOC Chlorid Nitrit Nitrat Sulfat Ammonium Natrium Eisen Mangan	581 7,37 < 0,9 5,27 < 0,010 13,3 16,6 < 0,02 1,95 < 0,010 < 0,0008 < 0,010	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05 Al < 0,2	
Leitfähigkeit pH-Wert TOC Chlorid Nitrit Nitrat Sulfat Ammonium Natrium Eisen Mangan Aluminium Arsen	581 7,37 < 0,9 5,27 < 0,010 13,3 16,6 < 0,02 1,95 < 0,010 < 0,0008 < 0,010 0,0001	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05 Al < 0,2 As < 0,01	
Leitfähigkeit pH-Wert TOC Chlorid Nitrit Nitrat Sulfat Ammonium Natrium Eisen Mangan Aluminium Arsen Blei	581 7,37 < 0,9 5,27 < 0,010 13,3 16,6 < 0,02 1,95 < 0,010 < 0,0008 < 0,010 0,0001 < 0,0005	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05 Al < 0,2	
Leitfähigkeit pH-Wert TOC Chlorid Nitrit Nitrat Sulfat Ammonium Natrium Eisen Mangan Aluminium Arsen Blei Chrom	581 7,37 < 0,9 5,27 < 0,010 13,3 16,6 < 0,02 1,95 < 0,010 < 0,0008 < 0,010 0,0001	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05 Al < 0,2 As < 0,01	
Leitfähigkeit pH-Wert TOC Chlorid Nitrit Nitrat Sulfat Ammonium Natrium Eisen Mangan Aluminium Arsen Blei Chrom	581 7,37 < 0,9 5,27 < 0,010 13,3 16,6 < 0,02 1,95 < 0,010 < 0,0008 < 0,010 0,0001 < 0,0005	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05 Al < 0,2 As < 0,01 Pb < 0,01	
Trinkwassergrenzwerte Leitfähigkeit pH-Wert TOC Chlorid Nitrit Nitrat Sulfat Ammonium Natrium Eisen Mangan Aluminium Arsen Blei Chrom Nickel Uran	581 7,37 < 0,9 5,27 < 0,010 13,3 16,6 < 0,02 1,95 < 0,010 < 0,0008 < 0,010 0,0001 < 0,0005 < 0,0002	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05 Al < 0,2 As < 0,01 Pb < 0,01 Cr < 0,025	

Alle Metalle

relevante Messwerte		Bedingungen für wünschenswerten	Ergebnis
		Zustand	Grund
Säurekorrosion			unwahrscheinlich
pH-Wert	7,37	pH > 7 oder	nicht sauer
Basenkapazität	0,52	KB8,2 < 0,1	
Chlorid	5,27		
Nitrit	< 0,010		
Nitrat	13,3		
Sulfat	16,6		
Carboxylate (<c3)< td=""><td></td><td></td><td></td></c3)<>			
			Es sind Korrosionsprodukte
Korrosionsprodukte			vorhanden
Aluminium	< 0,010	A1 < 0,01	
Blei	< 0,0005	Pb < 0,01	Zink
Chrom	< 0,0002	Cr < 0,01	
Eisen	< 0,010	Fe < 1	
Kupfer	< 0,0045	Cu < 0,01	
Nickel	< 0,0001	Ni < 0,01	
Zink	0,0374	Zn < 0.01	

Kupferwerkstoffe (Kupfer, Messing, Bronze, Rotguss)

relevante Messwerte		Bedingungen für wünschenswerten	Ergebnis
		Zustand	Grund
		Zustana	Offile
alaiahan "Oiga El" ah an			and has about ab
gleichmäßige Flächen pH-Wert		mII > 7.5	wahrscheinlich pH <= 7.5
•	7,37	pH > 7,5 KS > 1	pri <- 7.3
Säurekapazität TOC	5,72	NH4 < 1	
	< 0.9	NΠ4 < 1	
Ammonium	< 0,02		
Lochkorrosion Typ 1 ((Kaltwasse)	·)	wahrscheinlich
Säurekapazität	5,72	KS4,3 > 1	wantscheimen =
Chlorid	5,27	C1 > NO3 + 2*SO4	$C1/35 \le NO3/62 + SO4/48$
Nitrat	13,3	abfiltr. Stoffe < 1	C1/33 <= 1\03/02 + 3\04/40
Sulfat	16,6	aumin. Storie \ 1	
abfiltrierbare Stoffe			
Feststoffe	< 1,0		
resisione			
		l	
Lochkorrosion Typ 2 ((Heißwasse	r > 60°C	unwahrscheinlich
pH-Wert	7,37	pH > 7,0 oder	pH > 7,0
Säurekapazität	5,72	$KS_{4,3} > 1,5 \text{ oder}$	KS4.3 > 1.5
Kupferquotient (S3)	33,08	S3 > 1,5	S3 > 1,5
raprerquenent (55)	22,00	33 1,5	1,5
			'
selektive Korrosion (E	ntzinkung	von Messing)	unwahrscheinlich
Säurekapazität	5,72	KS4,3 > 1 oder	KS4,3 > 1Cl < Turner(KS4,3)
Chlorid	5,27	$Cl < Turner(KS_{4,3})$	120 1,00 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	-, -	1,37	
		•	•
Bimetallkorrosion			unwahrscheinlich
Säurekapazität	5,72	S1 < 1	S1 < 1
Chlorid	5,27		
Nitrat	13,3		
Sulfat	16,6		
Anionenquotient (S1)	0,12		
•			
Spannungsrisskorrosi	on		unwahrscheinlich
Ammonium	< 0,02	NH ₄ < 600	wenig Ammonium, Nitrit, Nitrat
Nitrit	< 0,010	$NO_2 < 300$	(keine Nitritbildung)
Nitrat	13,3	$NO_3 < 400$	
	,		
Beeinflussung der Tri	nkwasserqi	ualität	unwahrscheinlich
pH-Wert	7,37	$pH \ge 7,4$ oder	pH > 7
TOC	< 0,9	(pH > 7 und)	TOC <= 1,5
		TOC ≤ 1,5)	
			•

Flächenkorrosion führt zu gleichmäßigen, dünnen, braunen oder grünen Deckschichten und selten zu Schäden.

Bei Lochkorrosion vom Typ 1 in Kaltwasser entstehen auf der Innenseite halbkugelförmige Mulden oder Pusteln mit nadelstichartigen Löchern nach außen. Neben einer ungünstigen Wasserzusammensetzung sind Ablagerungen, kohlenstoffhaltige Filme oder Oxidfilme häufig Ursache von Lochfraß. Tritt Lochfraß 1cm neben einer Hartlot- oder überhitzten Weichlotstelle auf, so ist die Ursache in diesem Fall verkohltes Ziehfett, welches vom Herstellungsprozess des Cu-Rohres dessen Oberfläche belegt. Cu-Rohre DIN EN 1057 enthalten weniger als 0,2 mg/dm² Kohlenstoff, solche nach DVGW-GW 392 oder RAL-RG 641/1-Güte nur 0,1 mg/dm².

Lochkorrosion vom Typ 2 tritt im Warmwasser auf. Sie entsteht bei pH-Werten unter 7 sowie niedrigem Hydrogencarbonat- und hohem Sulfatgehalt.

Die Anfälligkeit für eine selektive Entzinkung von Messing hängt von der Legierungszusammensetzung ab. Wasserseitig wird sie durch wenig Hydrogencarbonat und viel Chlorid gefördert. Dabei treten weiße Zink-Korrosionsprodukte auf und das Kupfer verbleibt in poröser, schwammartiger Form.

Für Spannungskorrosion ist vor allem Messing anfällig. Sie tritt allerdings nur bei erheblichen Gehalten an Ammoniak oder Nitrit auf, die in natürlichen Wässern nicht vorkommen. Allerdings kann Nitrat unter Ablagerungen oder in Spalten reduziert werden, so dass lokal relevante Konzentrationen entstehen.

Bimetallkorrosion tritt normalerweise nicht auf, da Kupfer ein edles Metall ist. Bei Verbindungen von Kupfer mit Edelstahl können Probleme bei großen Stahl- und kleinen Kupferflächen entstehen. Die Bimetallkorrosion wird durch aktivierende Anionen (Chlorid, Nitrat, Sulfat...) gefördert und durch inhibierende Anionen wie Hydrogencarbonat gebremst.

Schmelztauchverzinkte Eisenwerkstoffe

relevante Messwerte		Bedingungen für wünschenswerten	Ergebnis
		Zustand	Grund
Deckschichtbildung			begünstigt <u> </u>
Basenkapazität	0,52	KB < 0,7	KB8,2 < 0,7 mmol
Säurekapazität	5,72	KS > 1	KS4,3 > 1 mmol/l
Phosphor	< 0,028	Inhibitoren	keine Loch- oder Muldenkorrosion
Kieselsäure	5,03	keine Mulden-	Kieselsäure vorhanden (Inhibitor)
TOC	< 0,9	oder Lochkorrosion	
	,		
starke gleichmäßige F	lächenkorr	osion	unwahrscheinlich
pH-Wert	7,37	pH ≥7	pH >=7
pri vvert	7,57	Deckschichtbildung	Deckschichtbildung
		Decksementondung	Booksementaning
Mulden- und Lochkor	rosion		sehr unwahrscheinlich
Säurekapazität	5,72	S1 < 0.5	Anionenquotient < 0,5
Anionenquotient (S1)	0,12	KS > 2	KS4,3 > 2 mmol/l und $Ca > 20$ mg/l
Calcium	85,3	Ca > 20	
selektive Zinkkorrosio	n		unwahrscheinlich
Gerieselquotient (S2)	2,31	S2 < 1 oder	NO3 < 19
Nitrat	13,3	S2 > 3 oder	
		Nitrat < 19	
elektrochemische Kori	rosion bei N	Aischinstallation	unwahrscheinlich
Leitfähigkeit	581	Cu < 0,063	Cu < 0,063
Kupfer	< 0,0045	oder	Deckschichtbildung
1	,	Deckschichtbildung	
		oder	
		LF < 50	
Beeinflussung der Tri	nkwasserau	ıalität	möglich
Basenkapazität	0,52	$KB_{8,2} \le 0.2$	KB8,2 > 0,2
Anionenquotient (S1)	0,12	$\begin{array}{c} RD_{8,2} \leq 0,2 \\ S1 \leq 1 \end{array}$,,-
	~,* ~	D1 21	

Unter günstigen Bedingungen findet in verzinkten Rohren eine geringe gleichmäßige Flächenkorrosion statt und bildet eine festhaftende Kalk-Zink-Rost-Schutzschicht aus. Hierzu ist auch ein ausreichend hoher Sauerstoffgehalt im Wasser notwendig (> 6mg/l).

Ist das Wasser stark kalkaggressiv, kann sich keine Kalkrostschutzschicht ausbilden und eine bereits bestehende wird aufgelöst. Die freiliegende Zinkschicht wird zerstört, das Grundmaterial korrodiert.

Eine Anhäufung von Messingbauteilen und stagnierender Betrieb ist häufig Ursache von Lochkorrosion (im Bereich von einem Meter hinter den Bauteilen). Kupferwerte > 0,1 mg/cm² in der Deckschicht um die Schadensstelle ist ein eindeutiges Zeichen für elektrochemische Korrosion.

Nichtrostende Stähle, Mo-frei

relevante Messwerte		Bedingungen für wünschenswerten Zustand	Ergebnis Grund
		Zustand	Orund
Lochkorrosion im Kaltv	vasser		unwahrscheinlich
Chlorid	5,27	Cl < 213	Chlorid < 213
Lochkorrosion im Warn	nwasser		unwahrscheinlich
Chlorid	5,27	C1 < 53	Chlorid < 53
Spaltkorrosion im Kaltv	vasser		unwahrscheinlich
Chlorid	5,27	Cl << 213	Chlorid < 53
	,		
Spaltkorrosion im Warn	nwasser		unwahrscheinlich
Chlorid	5,27	Cl < 53	Chlorid < 53
Spannungskorrosion, M	<i>Tesserschn</i>	itt-Korrosion von	
Hartlötverbindungen			unwahrscheinlich
Chlorid	5,27	C1 < 213	Chlorid < 213

Lochkorrosion ist eine lokale, in die Tiefe gehende Korrosion. Sie kann ausgelöst werden durch mechanische Beschädigung der Oberfläche oder durch Partikel von un- oder niedriglegiertem Eisen (Lokalelementbildung mit Rostbildung und Anreicherung von Chloridionen).

Spaltkorrosion tritt in Spalten unter 0,5 mm auf. Es bilden sich Konzentrationselemente mit nachfolgender Lochkorrosion im Spalt. Spalten können an Rohrverbindungen, an Dichtungen oder unter Ablagerungen vorhanden sein. Die Korrosion wird verstärkt durch stagnierendes Wasser und tiefe Spalten.

Messerschnittkorrosion tritt an Hartlötverbindungen von Edelstahl mit Silberlot auf. Selektive Korrosion an der Phasengrenze führt schließlich zu einer Lösung der Lötverbindung. Die Dauer bis zur Schadensausbildung kann bei mehreren Jahren liegen.

Spannungsrisse sind nehmen ihren Ausgang von anderen Korrosionsstellen und entstehen dann unter mechanischer Belastung.

Gusseisen, unlegierte und niedrig legierte Stähle

relevante Messwerte		Bedingungen für wünschenswerten	Ergebnis
		Zustand	Grund
Schutzschichtbildung i			
gleichmäßige Flächen	korrosion		zu erwarten
Sauerstoff	7,8	O2 > 3,2	O2 > 3,2
pH-Wert	7,37	pH > 7	pH > 7
Säurekapazität	5,72	KS4,3 > 2	KS4,3 > 2
Calcium	85,3	Ca > 40	Ca > 40
Lochkorrosion			unwahrscheinlich
Anionenquotient (S1)	0,12	S1 < 1	S1 < 1
TOC	< 0,9	TOC < 5	geringer organischer
			Kohlenstoffgehalt
		•	•
selektive Korrosion			begünstigt; Spongiose zu erwarten
pH-Wert	7,37	pH > 7	KB8,2 >= 0,1
Basenkapazität	0,52	KB < 0,1	
1	,		
		•	•
Bimetallkorrosion			keine Anhaltspunkte
Leitfähigkeit	581	LF < 100 oder	viel Calciumhydrogencarbonat
Säurekapazität	5,72	$Ca(HCO_3)_2 > 1 \text{ mmol/l}$	
Calcium	85,3		

Spongiose kann auftreten, wenn im Material eine ungleichmäßige Kohlenstoffverteilung vorliegt, z.B. an Graphitschichten in Grauguss oder an Schweißnähten. In diesem Fall wird der metallische Anteil herausgelöst, während das schwarze Graphitskelett schwammartig erhalten bleibt.

Bei Wässern ohne Luftzutritt (Kühl- oder Heizungswässer in geschlossenen Systemen) stellt sich ein pH-Wert > 8,5 ein und der im Füllwasser vorhandene Sauerstoff wird vollständig verbraucht. Dann findet keine Korrosion statt.

Aluminium

relevante Messwerte		Bedingungen für wünschenswerten Zustand	Ergebnis Grund
Säurekorrosion			nein <u> </u>
pH-Wert	7,37	pH >= 4,5	pH >= 4.5
			I
Basenkorrosion			nein
pH-Wert	7,37	pH < 8,5	pH < 8,5
			_
chloridinduzierte Kori		T	unwahrscheinlich
Chlorid	5,27	Chlorid < 35	wenig Chlorid
D: ///			
Bimetallkorrosion		T	keine Anhaltspunkte
Kupfer	< 0,0045	Cu < 0,063	keine erhöhten Gehalte edlerer
Chrom	< 0,0002	Cr < 0.05	Metalle
Nickel	< 0,0001	Ni < 0.05	

Manche Aluminiumlegierungen sind sehr empfindlich gegen Chloride (Lochfraß).

Asbestzement

relevante Messwerte		Bedingungen für wünschenswerten Zustand	Ergebnis Grund
Ablösung von Fasern Calcitsättigungsindex pH-Wert Basenkapazität	0,30 7,37 0,52	nicht kalkaggressiv (pH \geq 7 oder KB _{8,2} $<$ 0,1 mmol/l)	unwahrscheinlich nicht kalkaggressiv pH >= 7

Jessy-Lee Fournés M.Sc. Biochemie

Bemerkungen zu den einzelnen Parametern

Parameter	Bemerkungen zu den Parametern
Wassertemperatur	bei >30°C tritt eine Potentialumkehr bei Fe/Zn ein
Leitfähigkeit (bei 25°C)	hohe Salzgehalte beeinträchtigen den Geschmack und fördern die
, , ,	elektrochemische Korrosion
pH-Wert	pH unter 7: Säurekorrosion, Leitungsmetalle werden gelöst
Sauerstoff	hoher O ₂ -Gehalt begünstigt die Ausbildung eine Kalk-Zink-
	Rostschutzschicht
Redoxspannung	Redoxverhältnisse oxidierend
Redonspanning	oder reduzierend (erhöhte Löslichkeit von Fe, Mn)
Basenkapazität	gelöstes Kohlendioxid, Maß für den Säuregehalt
Säurekapazität	Hydrogencarbonat, Maß für die Alkalität und Puffervermögen
ТОС	TOC hat inhibitorische Wirkung bei Lochfraß-I (Cu),
100	
14 41 4: 1- 66 254	im TW unerwünscht, Nahrungsgrundlage für Bakterien
spektr. Absorptionskoeff. 254nm	Maß für organische Inhaltsstoffe, < 8/m bei UV-Desinfektion
spektr. Absorptionskoeff. 436nm	Färbung
Härte	Voraussetzung für Kalkablagerungen und Schutzschichtbildung
Härtebereich	Waschmitteldosierung
Chlor, frei	starker Oxidationsmittel, die Analysemethode erfasst auch andere
abfiltrierbare Stoffe	ungelöste Feststoffe, Ablagerungen, häufig Ursache für Lokalelemente
Kieselsäure	natürlicher Korrosionsinhibitor
Chlorid	fördert häufig Lochkorrosion (insbesondere bei Edelstahl)
Nitrat	siehe Korrosionsbeurteilung
Phosphor	Korrosionsinhibitor, Nährstoff für Algenbildung
Sulfat	siehe Korrosionsbeurteilung
Ammonium	Cu-Amminkomplex, Redoxverhältnisse, SpRK bei Cu
Calcium	Härte, Kesselstein
Magnesium	Härte
Eisen	Korrosionsprodukt oder gelöst in reduziertem Wasser
Mangan	meist geogen in reduzierten Wässern
Aluminium	Korrosionsprodukt, Fällungsmittel
Arsen	toxisch, carcinogen, meist geogenen Ursprungs oder aus Verzinkung
Blei	toxisch, meist aus Verzinkung
Cadmium	toxisch, meist aus Installationsmaterial (Verzinkung, Lote)
Chrom	toxisch, meist aus Installationsmaterial
Kupfer	toxisch, meist aus Leitungswerkstoffen
Nickel	toxisch, meist aus Installationsmaterial
Zink	meist aus Leitungswerkstoffen
Kohlendioxid	
	≈ KB _{8,2} Kohlensäure, meist unerwünscht
Hydrogencarbonat	≈ KS _{4,3} günstig für Deckschichtbildung
pH-Wert	kann berechnet werden aus LF, Ca, KS _{4,3} , KB _{8,2} und Temperatur
pH-Wert nach Calcitsättigung	Kalkkohlensäuregleichgewicht, sollte etwa gleich dem pH-Wert sein
Calcitsättigungsindex	pH - pH-Gleichgewicht
Calcitlösekapazität	<5; bei Mischung mehrerer Wässer <10 mg/l CaCO ₃ (TrinkwV Anl.3)
Anionenquotient	$S1 = (C1 + NO_3 + 2*SO_4) / KS_{4,3}$
Kationenquotient	S0 = (Na + K) / (2*Ca + 2*Mg)
Gerieselquotient	$S2 = (C1 + 2*SO_4) / NO_3$
Kupferquotient	$S3 = KS_{4,3} / SO_4$

Institut für Umweltanalytik: Zulassungen und Zertifizierung Akkreditiertes Prüflabor DAkkS D-PL-21277-01-00

Akkreditiertes Prüflabor DAkkS D-PL-21277-01-00 Private Sachverständige für die Wasserwirtschaft Untersuchungsstelle nach § 40 TrinkwV Zertifiziertes Prüflabor, AQS Bayern, AQS-Nr. 05/008/96 Zulassung nach § 44 Infektionsschutzgesetz

Institut für Umweltanalytik · Oberndorfer Str.1· 91096 Möhrendorf

Zweckverband zur Wasserversorgung Betzensteingruppe Herr Otto Alter Brunnen 2

91282 Betzenstein

Baucis Funke Oberndorfer Straße 1 91096 Möhrendorf 09131 41071 kontakt@funkelabor.de

30. Juni 2025 25.06205 TB 1

Rohwasseruntersuchung gemäß Eigenüberwachungsverordnung (EÜV)

Probenkennzeichnung

Bezeichnung : TB 1

Probenart : Trinkwasser

Untersuchungsumfang : Volluntersuchung nach EÜV Untersuchungszeitraum : 10.06.2025 bis 27.06.2025

Objektkennzahl : 4110 6334 00001 Wasserversorgungsunternehmen : ZV Betzensteingruppe

Probenahme

Entnahmestelle : TB 1, Brunnenhaus Probenehmer : J.-L. Fournes, IfU

Probenahmeort : Stierberg
Probenahmedatum : 10.06.25
Probenahmezeit : 12:30
Probenahmetechnik : a

Vor-Ort-Parameter : Färbung, Trübung, Geruch, Wassertemperatur, pH-Wert,

Leitfähigkeit, Sauerstoff

Analysenergebnisse

Parameter	Symbol	Einheit	Messwert
Färbung			farblos
Trübung			klar
Geruch			geruchlos
Wassertemperatur		°C	11,0
pH-Wert		C	7,39
Leitfähigkeit (bei 25°C)		μS/cm	575
Sauerstoff	O_2	mg/l	9,3
Säurekapazität	$KS_{4,3}$	mmol/l	5,74
Basenkapazität	$KB_{8,2}$	mmol/l	0,54
DOC	C	mg/l	< 0,9
spektr. Absorptionskoeff. 436nm	C	1/m	< 0,1
spektr. Absorptionskoeff. 254nm		1/m	0,62
Kieselsäure	SiO_2	mg/l	4,58
Calcium	Ca	mg/l	77,0
Magnesium	Mg	mg/l	27,6
Kalium	K	mg/l	< 0,6
Natrium	Na	mg/l	1,93
Mangan	Mn	mg/l	< 0,0008
Eisen	Fe	mg/l	< 0,010
Ammonium	NH ₄ ⁺	mg/l	< 0,02
Aluminium	Al	mg/l	0,010
Arsen	As	mg/l	0,0002
Chlorid	Cl-	mg/l	5,60
Nitrat	NO ₃ -	mg/l	12,4
Nitrit	NO_2	-	< 0,01
Sulfat	SO_4^{2-}	mg/l	15,6
	PO ₄	mg/l	< 0,014
Phosphat (ortho) Koloniezahl bei 22 °C	KBE	mg/l 1/ml	0,014
Koloniezahl bei 36 °C	KBE	1/ml	0
Escherichia coli	KBE	1/1111 1/100ml	0
Coliforme Keime	KBE	1/100ml	0
Pflanzenschutzmittel*)			
AMPA		μg/l	
2,4-D		μg/l	< 0,02
2-Hydroxyatrazin		μg/l	< 0,02
Aclonifen		μg/l μg/l	< 0,02
Amidosulfuron		μg/l	< 0,02
Atrazin		μg/l	0,020
Azoxystrobin		μg/l μg/l	< 0,020
Beflubutamid		μg/1 μg/l	< 0,02
Bentazon		μg/l μg/l	< 0,02
Bixafen		μg/l μg/l	< 0,02
Boscalid			< 0,02
Bromacil		μg/l	< 0,02
		μg/l	< 0,02
Bromoxynil Carbendazim		μg/l	< 0,02
Carbendaziiii Carbetamid		μg/l	< 0,02
Caroetamid Chloridazon		μg/l	·
		μg/l	< 0,02
Chloridazon, desphenyl-B	1	μg/l	
Chloridazon, methyldesphenyl-Bl	l	μg/l	< 0.02
Chlortoluron		μg/l	< 0.02
Clodinafop-propargyl		μg/l	< 0.02
Clomazone		μg/l	< 0.02
Clopyralid		μg/l	< 0.05
Clothianidin		μg/l	< 0.02
Cyflufenamid		μg/l	< 0.02
Cyproconazol		μg/l	< 0.02
Desethyl-Atrazin		μg/l	0,036
Desethyl-Desisopropylatrazin		μg/l	0,022

Parameter	Symbol	Einheit	Messwert
D4-1-i		/1	< 0.02
Desethylsimazin		μg/l	< 0.02
Desethylterbuthylazin Dicamba		μg/l	< 0,02 < 0,05
Dichlorprop		μg/l μg/l	< 0,03
2,6-Dichlorbenzamid		μg/l μg/l	< 0,02
Difenoconazol		μg/l	< 0,02
Diflufenican		μg/l	< 0,02
Dimefuron		μg/l	< 0,02
Dimethachlor		μg/l	< 0,02
Dimethenamid		μg/l	< 0,02
Dimethylsulfamid		$\mu g/l$	
Dimethoat		μg/l	< 0,02
Dimethomorph		μg/l	< 0,02
Dimoxystrobin		μg/l	< 0,02
Diuron		μg/l	< 0.02
Epoxiconazol		μg/l	< 0.02
Ethidimuron		μg/l	< 0.02
Ethofumesat		μg/l	< 0.02
Fenoxaprop		μg/l	< 0.02
Fenpropidin		μg/l	< 0.02
Fenpropimorph Flazasulfuron		μg/l	< 0,02 < 0,02
Flonicamid		μg/l	< 0,02
Florasulam		μg/l μg/l	< 0,02
Fluazifop		μg/l μg/l	< 0,02
Fluazinam		μg/l μg/l	< 0,02
Fludioxonil		μg/l	< 0,02
Flufenacet		μg/l	< 0,02
Flumioxazin		μg/l	< 0,02
Fluopicolide		μg/l	< 0,02
Fluopyram		μg/l	< 0,02
Flupyrsulfuron-methyl		μg/l	< 0,02
Fluroxypyr		μg/l	< 0,02
Flurtamon		$\mu g/l$	< 0,02
Flusilazol		μg/l	< 0,02
Fluxapyroxad		μg/l	< 0,02
Foramsulfuron		μg/l	< 0,02
Glyphosat		μg/l	< 0.05
Haloxyfop		μg/l	< 0,02
Imazalil		μg/l	< 0.02
Imidacloprid Iodosulfuron-methyl		μg/l	< 0,02 < 0,02
Ioxynil		μg/l μg/l	< 0,02
Iprodion		μg/l μg/l	< 0.02
Isoproturon		μg/l	< 0.02
Isopyrazam		μg/l	< 0,02
Isoxaben		μg/l	< 0.02
Kresoxim-methyl		μg/l	< 0,02
Lenacil		μg/l	< 0,02
Mandipropamid		μg/l	< 0,02
MCPA		μg/l	< 0,02
Mecoprop		μg/l	< 0,02
Mesosulfuron-methyl		$\mu g/l$	< 0,02
Mesotrion		$\mu g/l$	< 0,02
Metalaxyl		μg/l	< 0,02
Metamitron		μg/l	< 0,02
Metazachlor		μg/l	< 0,02
Metazachlor BH479-4		μg/l	
Metazachlor BH479-8		μg/l	< 0.02
Metconazol Mathiagarh		μg/l	< 0.02
Methiocarb		μg/l	< 0,05

Parameter	Symbol	Einheit	Messwert
Methoxyfenozid		μg/l	< 0,02
Metobromuron		μg/l	< 0,02
Metolachlor		μg/l	< 0,02
Metosulam		μg/l	< 0.02
Metribuzin		μg/l	< 0,02
Metsulfuron-methyl		μg/l μg/l	< 0,02
Myclobutanil		μg/l	< 0,02
Napropamid		μg/l μg/l	< 0,02
Nicosulfuron		μg/l μg/l	< 0,02
Penconazol		μg/l μg/l	< 0,02
Pendimethalin			< 0,02
Pethoxamid		μg/l	< 0,02
Picolinafen		μg/l	·
		μg/l	< 0.02
Picoxystrobin Pinoxaden		μg/l	< 0.02
Pirimicarb		μg/l	< 0.02
		μg/l	< 0.02
Prochloraz		μg/l	< 0.02
Propamocarb		μg/l	< 0.02
Propaquizafop		μg/l	< 0.02
Propazin		μg/l	< 0.02
Propiconazol		μg/l	< 0.02
Propoxycarbazon		μg/l	< 0.02
Propyzamid		μg/l	< 0.02
Proquinazid		μg/l	< 0,02
Prosulfocarb		μg/l	< 0,02
Prosulfuron		μg/l	< 0,02
Prothioconazol		μg/l	< 0,02
Pyrimethanil		μg/l	< 0,02
Pyroxsulam		μg/l	< 0,02
Quinmerac		μg/l	< 0,02
Quinoclamin		μg/l	< 0,02
Quinoxyfen		μg/l	< 0,02
Simazin		μg/l	< 0,02
Spiroxamine		μg/l	< 0,02
Sulcotrion		μg/l	< 0,02
Tebuconazol		μg/l	< 0,02
Tebufenozid		μg/l	< 0,02
Tebufenpyrad		μg/l	< 0,02
Terbuthylazin		μg/l	< 0,02
Tetraconazol		μg/l	< 0,02
Thiacloprid		μg/l	< 0,02
Thiamethoxam		μg/l	< 0,02
Thifensulfuron-methyl		μg/l	< 0,02
Topramezone		μg/l	< 0,02
Triadimenol		μg/l	< 0,02
Triasulfuron		μg/l	< 0,02
Tribenuron-methyl		μg/l	< 0,02
Triclopyr		μg/l	< 0,02
Trifloxystrobin		μg/l	< 0,02
Triflusulfuron-methyl		μg/l	< 0,02
Triticonazol		μg/l	< 0,02
Tritosulfuron		μg/l	< 0,02
Summe PBSM		μg/l	0,078

 $^{^{*)}\;}$ Analytik im Unterauftrag Analytik Institut Rietzler GmbH, Fürth

Beurteilung, ΕÜV

Es handelt sich um hartes Wasser vom Typ Calcium-Magnesium-

Hydrogencarbonat.

Das Wasser ist über Jahre von gleichbleibender Beschaffenheit.

Pflanzenschutzmittel und deren Abbauprodukte sind in Spuren nachweisbar.

Frau B.Sc. Baucis Funke vom Bayer. Landesamt für Umwelt anerkannt unter der Nr. 05/0957/22 als privater Sachverståndiger in der Wasserwirtschaft für Elgenüberwachung

Institut für Umweltanalytik Baucis Funke
Akkreditiertes Prüflabor DAkkS D-PL-21277-01-00 Private Sachverständige für die Wasserwirtschaft Untersuchungsstelle nach § 40 TrinkwV Zertifiziertes Prüflabor, AQS Bayern, AQS-Nr. 05/008/96 Zulassung nach § 44 Infektionsschutzgesetz

Analysenmethoden

Parameter	Symbol	Einheit	Analysenmethode
Probenahme Mikrobiologie			DIN EN ISO 19458:06/12
Probenahme			DIN ISO 5667-5 (A14): 2011/02
Färbung			qualitativ
Trübung			qualitativ
Geruch			DIN EN ISO 1622-B3-C.06/10
Wassertemperatur		°C	bei der Probenahme
Leitfähigkeit (bei 25°C)		μS/cm	DIN EN 27888-C8:93/11
pH-Wert			DIN EN ISO 10523:12/04
Messtemperatur(pH)		$^{\circ}\mathrm{C}$	DIN 38404-C4:76/12
Sauerstoff	O_2	mg/l	DIN EN ISO 5814-G22:13/02
DOC	C	mg/l	DIN EN 1484-H3:97/08
Basenkapazität	$KB_{8,2}$	mmol/l	DIN 38409-H7:05/12
Säurekapazität	$KS_{4,3}$	mmol/l	DIN 38409-H7:05/12
Chlorid	Cl-	mg/l	DIN EN ISO 10304-1-D20:09/07
Nitrat	NO_3^-	mg/l	DIN EN ISO 10304-1-D20:09/07
Sulfat	SO_4^{2-}	mg/l	DIN EN ISO 10304-1-D20:09/07
Calcium	Ca	mg/l	DIN EN ISO 17294-2: 17/01
Kalium	K	mg/l	DIN EN ISO 17294-2: 17/01
Magnesium	Mg	mg/l	DIN EN ISO 17294-2: 17/01
Natrium	Na	mg/l	DIN EN ISO 17294-2: 17/01
Koloniezahl bei 22 °C	KBE	1/ml	TrinkwV, §43 Abs. 3/1
Koloniezahl bei 36 °C	KBE	1/ml	TrinkwV, §43 Abs. 3/1
Escherichia coli	KBE	1/100ml	DIN EN ISO 9308-1:17/09
Coliforme Keime	KBE	1/100ml	DIN EN ISO 9308-1:17/09
PBSM		μg/l	DIN 38407-F36:14/09
		-	DIN ISO 16308:17/09
Summe PBSM		μg/l	Summe der nachgewiesenen

Institut für Umweltanalytik \cdot Oberndorfer Str. 1 \cdot 91096 Möhrendorf

Zweckverband zur Wasserversorgung Betzensteingruppe Herr Otto Alter Brunnen 2

91282 Betzenstein

Baucis Funke Oberndorfer Straße 1 91096 Möhrendorf 09131 41071 kontakt@funkelabor.de

30. Juni 2025 25.06206 TB 2

Rohwasseruntersuchung gemäß Eigenüberwachungsverordnung (EÜV)

Probenkennzeichnung

Bezeichnung : TB 2

Probenart : Trinkwasser

Untersuchungsumfang : Volluntersuchung nach EÜV Untersuchungszeitraum : 10.06.2025 bis 27.06.2025

Objektkennzahl : 4110 6334 00005 Wasserversorgungsunternehmen : ZV Betzensteingruppe

Probenahme

Entnahmestelle : TB 2, Brunnenschacht Probenehmer : J.-L. Fournes, IfU

Probenahmeort : Stierberg
Probenahmedatum : 10.06.25
Probenahmezeit : 12:55
Probenahmetechnik : a

Vor-Ort-Parameter : Färbung, Trübung, Geruch, Wassertemperatur, pH-Wert,

Leitfähigkeit, Sauerstoff

Analysenergebnisse

Parameter	Symbol	Einheit	Messwert
Färbung			farblos
Trübung			klar
Geruch			geruchlos
Wassertemperatur		°C	11,1
pH-Wert			7,36
Leitfähigkeit (bei 25°C)		μS/cm	577
Sauerstoff	O_2	mg/l	9,8
Säurekapazität	$KS_{4,3}$	mmol/l	5,64
Basenkapazität	$KB_{8.2}$	mmol/l	0,49
DOC	C	mg/l	< 0,9
spektr. Absorptionskoeff. 436nm		1/m	< 0,1
spektr. Absorptionskoeff. 254nm		1/m	0,66
Kieselsäure	SiO_2	mg/l	4,68
Calcium	Ca	mg/l	85
Magnesium	Mg	mg/l	24,3
Kalium	K	mg/l	< 0,6
Natrium	Na	mg/l	1,91
Mangan	Mn	mg/l	< 0,0008
Eisen	Fe	mg/l	< 0,010
Ammonium	$\mathrm{NH_4}^+$	mg/l	< 0,02
Aluminium	Al	mg/l	< 0,010
Arsen	As	mg/l	0,0001
Chlorid	Cl-	mg/l	5,42
Nitrat	NO_3^-	mg/l	12,8
Nitrit	NO_2^-	mg/l	< 0,01
Sulfat	SO_4^{2-}	mg/l	17,2
Phosphat (ortho)	PO ₄	mg/l	< 0,014
Koloniezahl bei 22 °C	KBE	1/ml	0
Koloniezahl bei 36 °C	KBE	1/ml	0
Escherichia coli	KBE	1/100ml	0
Coliforme Keime	KBE	1/100ml	0
Pflanzenschutzmittel*)			
AMPA		$\mu g/l$	
2,4-D		μg/l	< 0,02
2-Hydroxyatrazin		μg/l	< 0,02
Aclonifen		μg/l	< 0,02
Amidosulfuron		μg/l	< 0,02
Atrazin		μg/l	0,021
Azoxystrobin		μg/l	< 0,02
Beflubutamid		μg/l	< 0,02
Bentazon		μg/l	< 0,02
Bixafen		μg/l	< 0,02
Boscalid		μg/l	< 0,02
Bromacil		μg/l	< 0,02
Bromoxynil		μg/l	< 0,02
Carbendazim		μg/l	< 0,02
Carbetamid		μg/l	< 0,02
Chloridazon		μg/l	< 0,02
Chloridazon, desphenyl-B		μg/l	- , -
Chloridazon, methyldesphenyl-B	1	μg/l	
Chlortoluron		μg/l	< 0,02
Clodinafop-propargyl		μg/l	< 0,02
Clomazone		μg/l	< 0,02
Clopyralid		μg/l	< 0,05
Clothianidin		μg/l	< 0,02
Cyflufenamid			< 0,02
Cyproconazol Desethyl-Atrazin Desethyl-Desisopropylatrazin		μg/l μg/l μg/l μg/l	< 0,02 < 0,02 0,041 0,026

Parameter	Symbol	Einheit	Messwert
D4-1-i		/1	< 0.02
Desethylsimazin		μg/l	< 0.02
Desethylterbuthylazin Dicamba		μg/l	< 0,02 < 0,05
Dichlorprop		μg/l μg/l	< 0,03
2,6-Dichlorbenzamid		μg/l μg/l	< 0,02
Difenoconazol		μg/l	< 0,02
Diflufenican		μg/l	< 0,02
Dimefuron		μg/l	< 0,02
Dimethachlor		μg/l	< 0,02
Dimethenamid		μg/l	< 0,02
Dimethylsulfamid		$\mu g/l$	
Dimethoat		μg/l	< 0,02
Dimethomorph		μg/l	< 0,02
Dimoxystrobin		μg/l	< 0,02
Diuron		μg/l	< 0.02
Epoxiconazol		μg/l	< 0.02
Ethidimuron		μg/l	< 0.02
Ethofumesat		μg/l	< 0.02
Fenoxaprop		μg/l	< 0.02
Fenpropidin		μg/l	< 0.02
Fenpropimorph Flazasulfuron		μg/l	< 0,02 < 0,02
Flonicamid		μg/l	< 0,02
Florasulam		μg/l μg/l	< 0,02
Fluazifop		μg/l μg/l	< 0,02
Fluazinam		μg/l μg/l	< 0,02
Fludioxonil		μg/l	< 0,02
Flufenacet		μg/l	< 0,02
Flumioxazin		μg/l	< 0,02
Fluopicolide		μg/l	< 0,02
Fluopyram		μg/l	< 0,02
Flupyrsulfuron-methyl		μg/l	< 0,02
Fluroxypyr		μg/l	< 0,02
Flurtamon		$\mu g/l$	< 0,02
Flusilazol		μg/l	< 0,02
Fluxapyroxad		μg/l	< 0,02
Foramsulfuron		μg/l	< 0,02
Glyphosat		μg/l	< 0.05
Haloxyfop		μg/l	< 0,02
Imazalil		μg/l	< 0.02
Imidacloprid Iodosulfuron-methyl		μg/l	< 0,02 < 0,02
Ioxynil		μg/l μg/l	< 0,02
Iprodion		μg/l μg/l	< 0.02
Isoproturon		μg/l	< 0.02
Isopyrazam		μg/l	< 0,02
Isoxaben		μg/l	< 0.02
Kresoxim-methyl		μg/l	< 0,02
Lenacil		μg/l	< 0,02
Mandipropamid		μg/l	< 0,02
MCPA		μg/l	< 0,02
Mecoprop		μg/l	< 0,02
Mesosulfuron-methyl		$\mu g/l$	< 0,02
Mesotrion		$\mu g/l$	< 0,02
Metalaxyl		μg/l	< 0,02
Metamitron		μg/l	< 0,02
Metazachlor		μg/l	< 0,02
Metazachlor BH479-4		μg/l	
Metazachlor BH479-8		μg/l	< 0.02
Metconazol Mathiagarh		μg/l	< 0.02
Methiocarb		μg/l	< 0,05

Parameter	Symbol	Einheit	Messwert
Methoxyfenozid		μg/l	< 0,02
Metobromuron		μg/l	< 0,02
Metolachlor		μg/l	< 0,02
Metosulam		μg/l	< 0.02
Metribuzin		μg/l	< 0,02
Metsulfuron-methyl		μg/l μg/l	< 0,02
Myclobutanil		μg/l	< 0,02
Napropamid		μg/l μg/l	< 0,02
Nicosulfuron		μg/l μg/l	< 0,02
Penconazol		μg/l μg/l	< 0,02
Pendimethalin			< 0,02
Pethoxamid		μg/l	< 0,02
Picolinafen		μg/l	·
		μg/l	< 0.02
Picoxystrobin Pinoxaden		μg/l	< 0.02
Pirimicarb		μg/l	< 0.02
		μg/l	< 0.02
Prochloraz		μg/l	< 0.02
Propamocarb		μg/l	< 0.02
Propaquizafop		μg/l	< 0.02
Propazin		μg/l	< 0.02
Propiconazol		μg/l	< 0.02
Propoxycarbazon		μg/l	< 0.02
Propyzamid		μg/l	< 0.02
Proquinazid		μg/l	< 0,02
Prosulfocarb		μg/l	< 0,02
Prosulfuron		μg/l	< 0,02
Prothioconazol		μg/l	< 0,02
Pyrimethanil		μg/l	< 0,02
Pyroxsulam		μg/l	< 0,02
Quinmerac		μg/l	< 0,02
Quinoclamin		μg/l	< 0,02
Quinoxyfen		μg/l	< 0,02
Simazin		μg/l	< 0,02
Spiroxamine		μg/l	< 0,02
Sulcotrion		μg/l	< 0,02
Tebuconazol		μg/l	< 0,02
Tebufenozid		μg/l	< 0,02
Tebufenpyrad		μg/l	< 0,02
Terbuthylazin		μg/l	< 0,02
Tetraconazol		μg/l	< 0,02
Thiacloprid		μg/l	< 0,02
Thiamethoxam		μg/l	< 0,02
Thifensulfuron-methyl		μg/l	< 0,02
Topramezone		μg/l	< 0,02
Triadimenol		μg/l	< 0,02
Triasulfuron		μg/l	< 0,02
Tribenuron-methyl		μg/l	< 0,02
Triclopyr		μg/l	< 0,02
Trifloxystrobin		μg/l	< 0,02
Triflusulfuron-methyl		μg/l	< 0,02
Triticonazol		μg/l	< 0,02
Tritosulfuron		μg/l	< 0,02
Summe PBSM		μg/l	0,088

 $^{^{*)}\;}$ Analytik im Unterauftrag Analytik Institut Rietzler GmbH, Fürth

TB 2

Beurteilung, ΕÜV

Es handelt sich um hartes Wasser vom Typ Calcium-Magnesium-

Hydrogencarbonat.

Das Wasser ist über Jahre von gleichbleibender Beschaffenheit.

Pflanzenschutzmittel und deren Abbauprodukte sind in Spuren nachweisbar.

Frau B.Sc. Baucis Funke vom Bayer. Landesamt für Umwelt anerkannt unter der Nr. 05/0957/22 als privater Sachverståndiger in der Wasserwirtschaft für Elgenüberwachung

Institut für Umweltanalytik Baucis Funke
Akkreditiertes Prüflabor DAkkS D-PL-21277-01-00 Private Sachverständige für die Wasserwirtschaft Untersuchungsstelle nach § 40 TrinkwV Zertifiziertes Prüflabor, AQS Bayern, AQS-Nr. 05/008/96 Zulassung nach § 44 Infektionsschutzgesetz

Analysenmethoden

Parameter	Symbol	Einheit	Analysenmethode
Probenahme Mikrobiologie			DIN EN ISO 19458:06/12
Probenahme			DIN ISO 5667-5 (A14): 2011/02
Färbung			qualitativ
Trübung			qualitativ
Geruch			DIN EN ISO 1622-B3-C.06/10
Wassertemperatur		°C	bei der Probenahme
Leitfähigkeit (bei 25°C)		μS/cm	DIN EN 27888-C8:93/11
pH-Wert			DIN EN ISO 10523:12/04
Messtemperatur(pH)		$^{\circ}\mathrm{C}$	DIN 38404-C4:76/12
Sauerstoff	O_2	mg/l	DIN EN ISO 5814-G22:13/02
DOC	C	mg/l	DIN EN 1484-H3:97/08
Basenkapazität	$KB_{8,2}$	mmol/l	DIN 38409-H7:05/12
Säurekapazität	$KS_{4,3}$	mmol/l	DIN 38409-H7:05/12
Chlorid	Cl-	mg/l	DIN EN ISO 10304-1-D20:09/07
Nitrat	NO_3^-	mg/l	DIN EN ISO 10304-1-D20:09/07
Sulfat	SO_4^{2-}	mg/l	DIN EN ISO 10304-1-D20:09/07
Calcium	Ca	mg/l	DIN EN ISO 17294-2: 17/01
Kalium	K	mg/l	DIN EN ISO 17294-2: 17/01
Magnesium	Mg	mg/l	DIN EN ISO 17294-2: 17/01
Natrium	Na	mg/l	DIN EN ISO 17294-2: 17/01
Koloniezahl bei 22 °C	KBE	1/ml	TrinkwV, §43 Abs. 3/1
Koloniezahl bei 36 °C	KBE	1/ml	TrinkwV, §43 Abs. 3/1
Escherichia coli	KBE	1/100ml	DIN EN ISO 9308-1:17/09
Coliforme Keime	KBE	1/100ml	DIN EN ISO 9308-1:17/09
PBSM		μg/l	DIN 38407-F36:14/09
			DIN ISO 16308:17/09
Summe PBSM		μg/l	Summe der nachgewiesenen