

Institut für Umweltanalytik · Oberndorfer Str.1· 91096 Möhrendorf

Zweckverband zur Wasserversorgung Betzensteingruppe

Herr Otto Alter Brunnen 2

91282 Betzenstein

Baucis Funke Oberndorfer Straße 1 91096 Möhrendorf 09131 41071 kontakt@funkelabor.de

Wasser Boden Luft Feuer

30. Juni 2025 25.06207

Orstnetz Kleingesee

Trinkwasseruntersuchung nach Trinkwasserverordnung

(TrinkwV in der Neufassung vom 20.Juni 2023)

Probenkennzeichnung

Probenart Trinkwasser

Orstnetz Kleingesee Bezeichnung

Laboreingang 10.06.2025 Objektkennzahl 1230 0474 00732 Wasserversorgungsunternehmen : ZV Betzensteingruppe

Art der Wasserversorgung zentrale Wasserversorgung (>10m³/d)

Zapfhahn Verbraucher Position im Leitungsnetz

Desinfektion keine Art der Aufbereitung keine Zusatzstoffe für Aufbereitung keine

Probenahme

Probenahmeort Vogelberg 14

Entnahmestelle Probehahn Wasseruhr J.-L. Fournes, IfU Probenehmer

Probenahmedatum 10.06.25 Probenahmezeit 9:05

Probenahmetechnik Mikrobiol. DIN EN ISO 19458: 2006/12 Zweck a

Probenhametechnik Chemie DIN ISO 5667-5:2011/02

Probenahmetechnik für Zufallsstichprobe

Schwermetalle Pb, Cu, Ni

Vor-Ort-Parameter Geschmack, Leitfähigkeit, pH-Wert, Sauerstoff,

Wassertemperatur

Analysenverfahren

Untersuchungszeitraum 10.06.2025 bis 27.06.2025

Die Messunsicherheiten der angewandten Analysenverfahren Messunsicherheit

liegen innerhalb der nach der TrinkwV zulässigen Fehlerbereiche

Die Nachweisgrenzen der angewandten Analysenverfahren Nachweisgrenzen

entsprechen den Bedingungen der TrinkwV Anlage 5.1

Institut für Umweltanalytik Baucis Funke Akkreditiertes Prüflabor DAkkS D-PL-21277-01-00 Private Sachverständige für die Wasserwirtschaft Untersuchungsstelle nach § 40 TrinkwV

Zertifiziertes Prüflabor, AQS Bayern, AQS-Nr. 05/008/96

Zulassung nach § 44 Infektionsschutzgesetz

Mikrobiologische Untersuchungen (TrinkwV Anlage 1 und Anlage 3)

Parameter		Einheit	Messwert	Grenzwert	Analysenmethode
Koloniezahl bei 22 °C	KBE	1/ml	0	20/100/1000 1)	TrinkwV, §43 Abs. 3/1
Koloniezahl bei 36 °C	KBE	1/ml	0	100	TrinkwV, §43 Abs. 3/1
Escherichia coli	KBE	1/100ml	0	0	DIN EN ISO 9308-1:17/09
Enterokokken	KBE	1/100ml	0	0	DIN EN ISO 7899-2:00/11
Coliforme Keime	KBE	1/100ml	0	0	DIN EN ISO 9308-1:17/09
Clostridium perfringens	KBE	1/100ml	0	0	DIN EN ISO 14189:16/11
Legionellen		1/100ml		<100 2)	

¹⁾ 20 / ml nach Abschluss der Aufbereitung im desinfizierten Trinkwasser

TrinkwV Anlage 2.1

Chemische Parameter, deren Konzentration sich im Verteilungsnetz einschließlich der Trinkwasserinstallation in der Regel nicht mehr erhöht

Benzol $\mu g/l < 0$	1,0 DIN 38407-F43:14/10
10	
Bor $B mg/l < 0$	0,06 1,0 DIN EN ISO 17294-2: 17/01
	0,0015 0,010 DIN EN ISO 15061-D34:01/12
Chrom $Cr mg/l < 0$	0,0002 0,0250 ¹⁾ DIN EN ISO 17294-2: 17/01
Cyanide (gesamt) CN mg/l < 0	0,005 DIN 38405-D13:11/04
Fluorid F- mg/l 0	,0587 1,5 DIN EN ISO 10304-1-D20:09/07
Nitrat NO_3 mg/l 1	4,0 DIN EN ISO 10304-1-D20:09/07
Quecksilber Hg mg/l < 0	0,0001 0,0010 DIN EN ISO 17294-2: 17/01
Selen Se mg/l 0	0,0001 0,010 DIN EN ISO 17294-2: 17/01
	0,0001 0,010 DIN EN ISO 17294-2: 17/01
1,2-Dichlorethan $\mu g/l$ < 0),7 3,0 DIN 38407-F43:14/10
Trichlorethen $\mu g/l$ < 1	,0 DIN 38407-F43:14/10
Tetrachlorethen $\mu g/l$ < 1	,0 DIN 38407-F43:14/10
Summe Tri- und Tetrachlorethen µg/l 0	
Per- und Polyfluorierte Alkylsubstanzen	*)
	0,002 DIN EN 17892:2024-08
	0,001 DIN EN 17892:2024-08
	0,002 DIN EN 17892:2024-08
	0,002 DIN EN 17892:2024-08
	0,001 DIN EN 17892:2024-08
(PFUdS)	,
	0,001 DIN EN 17892:2024-08
	0,001 DIN EN 17892:2024-08
(PFTrDS)	*
Summe PFAS 4 µg/l 0	0,020 ²⁾ PFOA+PFNA+PFHxS+PFOS
Summe PFAS 20 µg/l 0	

 $[\]overline{^{(1)}}$ 0,025 mg/l gilt bis 11.1.2030, danach 0,0050 mg/l

^{100 /} ml am Zapfhahn des Verbrauchers 1000 / ml bei Einzelversorgungen

technischer Maßnahmewert

²⁾ Grenzwert gilt ab 12.1.2028

³⁾ Grenzwert gilt ab 12.1.2026 *) Analytik im Unterauftrag Analytik Institut Rietzler GmbH, Fürth

TrinkwV Anlage 2.1 (Fortsetzung)

Parameter	Symbol	Einheit	Messwert	Grenzwert	Analysenmethode
Pflanzenschutzmittelwirkstoffe un	d Biozidnr	oduktw	virkstoffe		*)
AMPA	-	μg/l	stojje	0,10	
2,4-D		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
2-Hydroxyatrazin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Aclonifen		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Amidosulfuron		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Atrazin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Azoxystrobin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Beflubutamid		μg/l μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Bentazon		μg/l μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Bixafen		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Boscalid		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Bromacil		μg/l μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Bromoxynil		μg/l μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Carbendazim			< 0.02	0,10	DIN 38407-F36:14/09
Carbeitaziii Carbetamid		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Carbetanna Chloridazon		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
		μg/l	< 0,02	3,0**	BII 30407 130.14709
Chloridazon, desphenyl-B		μg/l		3,0**	
Chloridazon, methyldesphenyl-B1		μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Chlortoluron		μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Clodinafop-propargyl		μg/l	< 0.02		DIN 38407-F36:14/09 DIN 38407-F36:14/09
Clomazone		μg/l	< 0.02	0,10	DIN 38407-F36:14/09 DIN 38407-F36:14/09
Clopyralid		μg/l	< 0.05	0,10	DIN 38407-F36:14/09
Clothianidin		μg/l	< 0.02	0,10	
Cyflufenamid		μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Cyproconazol		μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Desethyl-Atrazin		μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Desethyl-Desisopropylatrazin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Desethylsimazin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Desethylterbuthylazin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dicamba		μg/l	< 0,05	0,10	DIN 38407-F36:14/09
Dichlorprop		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
2,6-Dichlorbenzamid		μg/l		0,10	
Difenoconazol		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Diflufenican		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dimefuron		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dimethachlor		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dimethenamid		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dimethylsulfamid		μg/l		0,10	
Dimethoat		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dimethomorph		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Dimoxystrobin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Diuron		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Epoxiconazol		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Ethidimuron		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Ethofumesat		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fenoxaprop		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fenpropidin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fenpropimorph		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Flazasulfuron		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Flonicamid		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Florasulam		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fluazifop		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fluazinam		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fludioxonil		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Flufenacet		μg/l	< 0,02	0,10	DIN 38407-F36:14/09

TrinkwV Anlage 2.1 (Fortsetzung)

Parameter	Symbol Einheit	Messwert	Grenzwert	Analysenmethode*
Pflanzenschutzmittelwirkstoffe un	-		0.10	*)
Flumioxazin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fluopicolide	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fluopyram	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Flupyrsulfuron-methyl	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fluroxypyr	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Flurtamon	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Flusilazol	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Fluxapyroxad	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Foramsulfuron	μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Glyphosat	μg/l	< 0,05	0,10	DIN ISO 16308:17/09
Haloxyfop	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
mazalil	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
midacloprid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
odosulfuron-methyl	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
oxynil	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
prodion	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
soproturon		< 0,02	0,10	DIN 38407-F36:14/09
-	μg/l		0,10	DIN 38407-F36:14/09
sopyrazam	μg/l	< 0.02	0,10	DIN 38407-F36:14/09
soxaben	μg/l	< 0.02	0,10	DIN 38407-F36:14/09 DIN 38407-F36:14/09
Kresoxim-methyl	μg/l	< 0.02		
Lenacil	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Mandipropamid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
MCPA	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Mecoprop	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Mesosulfuron-methyl	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Mesotrion	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metalaxyl	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metamitron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metazachlor	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metazachlor BH479-4	μg/l	•	3,0**	
Metazachlor BH479-8	μg/l		3,0**	
Metconazol	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Methiocarb	μg/l	< 0,05	0,10	DIN 38407-F36:14/09
Methoxyfenozid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metobromuron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metolachlor	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Metosulam		< 0,02	0,10	DIN 38407-F36:14/09
Metribuzin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
	μg/l		0,10	DIN 38407-F36:14/09
Metsulfuron-methyl	μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Myclobutanil	μg/l	< 0.02	0,10	DIN 38407-F36:14/09 DIN 38407-F36:14/09
Napropamid	μg/l	< 0.02		
Nicosulfuron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Penconazol	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Pendimethalin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Pethoxamid	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Picolinafen	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Picoxystrobin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Pinoxaden	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Pirimicarb	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Prochloraz	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Propamocarb	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Propaquizafop	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Propazin	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Propiconazol	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
-		< 0,02	0,10	DIN 38407-F36:14/09
Propoxycarbazon	μg/l		0,10	DIN 38407-F36:14/09
Propyzamid	μg/l	< 0.02		
Proquinazid	μg/l	< 0.02	0,10	DIN 38407-F36:14/09
Prosulfocarb	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Prosulfuron	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Prothioconazol	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Pyrimethanil	μg/l	< 0,02	0,10	DIN 38407-F36:14/09

TrinkwV Anlage 2.1 (Fortsetzung)

Parameter	Symbol	Einheit	Messwert	Grenzwert	Analysenmethode
Pflanzenschutzmittelwirkstoffe	*)				
Pyroxsulam	•	μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Quinmerac		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Quinoclamin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Quinoxyfen		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Simazin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Spiroxamine		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Sulcotrion		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Tebuconazol		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Tebufenozid		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Tebufenpyrad		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Terbuthylazin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Tetraconazol		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Thiacloprid		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Thiamethoxam		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Thifensulfuron-methyl		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Topramezone		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Triadimenol		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Triasulfuron		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Tribenuron-methyl		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Triclopyr		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Trifloxystrobin		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Triflusulfuron-methyl		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Triticonazol		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Tritosulfuron		μg/l	< 0,02	0,10	DIN 38407-F36:14/09
Summe PBSM		μg/l	0	0,50	Summe der nachgewiesenen

^{*)} Analytik im Unterauftrag Analytik Institut Rietzler GmbH, Fürth
**) gesundheitlicher Orientierungswert für nicht-relevante Metaboliten (Liste UBA 2019); diese gehen nicht in die Summe PSM und Biozide ein

TrinkwV Anlage 2.2 Chemische Parameter, deren Konzentration im Verteilungsnetz einschließlich der Trinkwasserinstallation ansteigen kann

6/7

Parameter	Symbol	Einheit	Messwert	Grenzwert	Analysenmethode
Antimon	Sb	mg/l	< 0,0001	0,0050	DIN EN ISO 17294-2: 17/01
Arsen	As	mg/l	0,0001	0,010 4)	DIN EN ISO 17294-2: 17/01
Blei	Pb	mg/l	0,0005	0,0100 5) 6)	DIN EN ISO 17294-2: 17/01
Cadmium	Cd	mg/l	< 0,0001	0,0030	DIN EN ISO 17294-2: 17/01
Kupfer	Cu	mg/l	0,0064	2,0 5)	DIN EN ISO 17294-2: 17/01
Nickel	Ni	mg/l	0,0002	0,020 5)	DIN EN ISO 17294-2: 17/01
Nitrit	NO_2^-	mg/l	< 0,010	0,50	DIN EN ISO 10304-1-D20:09/07
Nitrat/50 + Nitrit/3			< 0,28	1	TrinkwV
Chlorat		mg/l		$0,070^{7)}$	
Chlorit		mg/l		0,20	
Trichlormethan		μg/l			
Bromdichlormethan		μg/l			
Dibromchlormethan		μg/l			
Tribrommethan		μg/l			
Summe Trihalogenmethane		μg/l		50 / 10 8)	Summe der nachgewiesenen
Benzo(b)fluoranthen		μg/l	< 0.02		DIN 38407-F39:11/09
Benzo(k)fluoranthen		μg/l	< 0,02		DIN 38407-F39:11/09
Indeno(123cd)pyren		μg/l	< 0,02		DIN 38407-F39:11/09
Benzo(ghi)perylen		μg/l	< 0,02		DIN 38407-F39:11/09
Summe der 4 PAK		μg/l	0	0,10	Summe d. nachgew.
Benzo(a)pyren		μg/l	< 0,002	0,010	DIN 38407-F39:11/09
Bisphenol A		μg/l	< 0,1	2,5 9)	DIN EN ISO 18857-2:2012-01 (F32) mod.***

Indikatorparameter (TrinkwV Anlage 3.1)

Parameter	Symbol	Einheit	Messwert	Grenzwert	Analysenmethode
Geruch			geruchlos	annehmbar 1)	DIN EN ISO 1622-B3-C.06/10
Geschmack			frisch	annehmbar	DIN EN ISO 1622-B3:06/10
Leitfähigkeit (bei 25°C)		μS/cm	630	2790	DIN EN 27888-C8:93/11
pH-Wert		•	7,42	6,5 bis 9,5	DIN EN ISO 10523:12/04
Messtemperatur(pH)		°C	16,2		DIN 38404-C4:76/12
Calcitlösekapazität	CaCO3	mg/l	-23,35	5/10 2)	DIN 38404-C10/3:12/12
1		Č	kalkabscheidend		
TOC	C	mg/l	< 0,9	3)	DIN EN 1484-H3:97/08
spektr. Absorptionskoeff. 436nm		1/m	< 0,1	0,5	DIN EN ISO 7887-C1:12/04
Trübung		NTU	0,18	1,0 4)	DIN EN ISO 7027-C21:16/11
Chlorid	Cl-	mg/l	10,7	250	DIN EN ISO 10304-1-D20:09/07
Sulfat	SO_4^{2-}	mg/l	15,5	250	DIN EN ISO 10304-1-D20:09/07
Aluminium	Al	mg/l	< 0,010	0,200	DIN EN ISO 17294-2: 17/01
Ammonium	$\mathrm{NH_4}^+$	mg/l	< 0,02	0,50	DIN 38406-E5:83/10
Natrium	Na	mg/l	4,17	200	DIN EN ISO 17294-2: 17/01
Eisen	Fe	mg/l	< 0,010	0,200	DIN EN ISO 17294-2: 17/01
Mangan	Mn	mg/l	< 0,0008	0,050	DIN EN ISO 17294-2: 17/01

Chlorgeruch bleibt unberücksichtigt

^{0,010} mg/l gilt bis 11.1.2036, danach 0,0040 mg/l gilt für die Zufallsstichprobe und die gestaffelte Stagnationsprobe

^{0,010} mg/l gilt bis 11.1.2028, danach 0,0050 mg/l

bei zeitweise Dosierung gilt ein Grenzwert von 0,20mg/l
 50 μg/l beim Verbraucher, 10 μg/l am Wasserwerk

gilt ab 12.1.2024

^{***} nicht akkreditiert

der Grenzwert von 5mg/l gilt als erfüllt, wenn der pH-Wert >7,7 am Wasserwerksausgang ist der Grenzwert von 10mg/l gilt für die Mischung von Wässern aus zwei oder mehr Wasserwerken

ohne anormale Veränderung

am Ausgang Wasserwerk

Weitere Parameter

Parameter	Symbol	Einheit	Messwert	Grenzwert	Analysenmethode
Wassertemperatur		°C	16,2		bei der Probenahme
Calcium	Ca	mg/l	73,9		DIN EN ISO 17294-2: 17/01
Calcium	Ca	mmol/l	1,84		DIN EN ISO 17294-2: 17/01
Magnesium	Mg	mg/l	36,4		DIN EN ISO 17294-2: 17/01
Magnesium	Mg	mmol/l	1,50		DIN EN ISO 17294-2: 17/01
Kalium	K	mg/l	0,9		DIN EN ISO 17294-2: 17/01
Kalium	K	mmol/l	0,0230		DIN EN ISO 17294-2: 17/01
Härte		mmol/l	3,34		ICP (Ca+Mg)
Härtebereich			hart		Wasch- und Reinigungsmittelgesetz
			(18,7 °dH)		
Säurekapazität	$KS_{4,3}$	mmol/l	6,25		DIN 38409-H7:05/12
Sauerstoff	O_2	mg/l	8,3		DIN EN ISO 5814-G22:13/02

Beurteilung

Beurtenung	
Beurteilung, TrinkwV Anlage 1 und 3 (Mikrobiologie)	Das Trinkwasser ist aus mikrobiologischer Sicht einwandfrei und entspricht den Anforderungen der Trinkwasserverordnung.
Beurteilung, TrinkwV Anlage 2.1	Die Grenzwerte aller Parameter sind eingehalten. Der Nitratgehalt liegt in einem mittleren Bereich. Organische Schadstoffe (wie z.B. Lösemittelrückstände) sind nicht nachweisbar. Per- und Polyfluorierte Alkylsubstanzen sind nicht nachweisbar. Pflanzenschutzmittel und deren Abbauprodukte sind nicht nachweisbar.
Beurteilung, TrinkwV Anlage 2.2	Das Trinkwasser entspricht den Anforderungen. Schwermetalle aus dem Leitungsmaterial sind nicht nachweisbar oder nur in geringen, gesundheitlich unbedenklichen Spuren enthalten. Bisphenol A ist nicht nachweisbar.
Beurteilung, TrinkwV Anlage 3.1 (Indikatorparameter)	Das Trinkwasser entspricht den Anforderungen. Eisen und Mangan sind nicht nachweisbar. Das Wasser steht nicht im Kalk-Kohlensäure-Gleichgewicht. Es ist kalkabscheidend.
Beurteilung, TrinkwV weitere Parameter	Das Wasser wird nach dem Wasch- und Reinigungsmittelgesetz dem Härtebereich hart zugeordnet (18,7 °dH).

Baucis Funke

& Juke

Institut für Umweltanalytik · Oberndorfer Str.1· 91096 Möhrendorf

Zweckverband zur Wasserversorgung Betzensteingruppe Herr Otto Alter Brunnen 2 91282 Betzenstein Baucis Funke Oberndorfer Straße 1 91096 Möhrendorf 09131 41071 kontakt@funkelabor.de 30. Juni 2025 25.06207techn Orstnetz Kleingesee

Korrosionstechnische Wasseruntersuchung

Anlass und Auftrag

Die korrosionstechnische Wasseruntersuchung dient zur Feststellung der Wasserzusammensetzung und des Verhaltens gegen Installationsmaterialien

Probenkennzeichnung

Probenart : Trinkwasser

Bezeichnung : Orstnetz Kleingesee

Laboreingang : 10.06.2025

Objektkennzahl : 1230 0474 00732

Wasserversorgungsunternehmen : ZV Betzensteingruppe

Probenahme

Probenahmeort : Vogelberg 14
Entnahmestelle : Probehahn Wasseruhr
Probenehmer : J.-L. Fournes, IfU
Probenahmedatum : 10.06.25

Probenahmezeit : 9:05
Probenahmetechnik : a

Analysenergebnisse

Parameter	Symbol	Einheit	Messwert	Analysenmethoden
G .				
Summenparameter			C 11	45
Färbung			farblos	qualitativ
Trübung			klar	qualitativ
Geruch			geruchlos	DIN EN ISO 1622-B3-C.06/10
Geschmack		0.0	frisch	DIN EN ISO 1622-B3:06/10
Wassertemperatur		°C	16,2	bei der Probenahme
Leitfähigkeit (bei 25°C)		μS/cm	630	DIN EN 27888-C8:93/11
pH-Wert	0	/1	7,42	DIN EN ISO 10523:12/04
Sauerstoff	O_2	mg/l	8,3	DIN EN ISO 5814-G22:13/02
Redoxspannung	IZD.	mV	419	DIN 38404-C6:84/05
Basenkapazität	$KB_{8,2}$	mmol/l	0,56	DIN 38409-H7:05/12
Säurekapazität	KS _{4,3}	mmol/l	6,25	DIN 38409-H7:05/12
TOC	С	mg/l	< 0,9	DIN EN 1484-H3:97/08
spektr. Absorptionskoeff. 254nm		1/m	0,73	DIN 38404-C3:05/07
spektr. Absorptionskoeff. 436nm		1/m	< 0,1	DIN EN ISO 7887-C1:12/04
Härte	CI.	mmol/l	3,34	ICP (Ca+Mg)
Chlor, frei	Cl	mg/l	- 1.0	BB1 20400 YZ (0.45
abfiltrierbare Stoffe		mg/l	< 1,0	DIN 38409-H2 (0,45μm)
Feststoffe				
Anionen				
Kieselsäure	SiO_2	mg/l	5,09	DIN 38405-D21:90/10
Carboxylate (<c3)< td=""><td>$C_2H_3O_2^-$</td><td>mg/l</td><td></td><td></td></c3)<>	$C_2H_3O_2^-$	mg/l		
Chlorid	Cl-	mg/l	10,7	DIN EN ISO 10304-1-D20:09/07
Nitrit	NO_2^-	mg/l	< 0,010	DIN EN ISO 10304-1-D20:09/07
Nitrat	NO_3^-	mg/l	14,0	DIN EN ISO 10304-1-D20:09/07
Phosphor	P	mg/l	< 0,028	DIN EN ISO 17294-2: 17/01
Sulfat	SO_4^{2-}	mg/l	15,5	DIN EN ISO 10304-1-D20:09/07
Kationen				
Ammonium	$\mathrm{NH_{4}^{+}}$	mg/l	< 0,02	DIN 38406-E5:83/10
Calcium	Ca	mg/l	73,9	DIN EN ISO 17294-2: 17/01
Magnesium	Mg	mg/l	36,4	DIN EN ISO 17294-2: 17/01
Kalium	K	mg/l	0,9	DIN EN ISO 17294-2: 17/01
Natrium	Na	mg/l	4,17	DIN EN ISO 17294-2: 17/01
Eisen	Fe	mg/l	< 0,010	DIN EN ISO 17294-2: 17/01
Mangan	Mn	mg/l	< 0,0008	DIN EN ISO 17294-2: 17/01
Aluminium	Al	mg/l	< 0,010	DIN EN ISO 17294-2: 17/01
Arsen	As	mg/l	0,0001	DIN EN ISO 17294-2: 17/01
Blei	Pb	mg/l	0,0005	DIN EN ISO 17294-2: 17/01
Chrom	Cr	mg/l	< 0,0002	DIN EN ISO 17294-2: 17/01
Kupfer	Cu	mg/l	0,0064	DIN EN ISO 17294-2: 17/01
Nickel	Ni	mg/l	0,0002	DIN EN ISO 17294-2: 17/01
Zink	Zn	mg/l	0,0030	DIN EN ISO 17294-2: 17/01
Uran	U	mg/l	0,0001	DIN EN ISO 17294-2: 17/01
Berechnete Parameter				
gelöstes Kohlendioxid	CO_2	mmol/l	0,543	
Hydrogencarbonat	HCO3-	mmol/l	6,178	
Carbonat	CO3	mmol/l	0,0085	
pH-Wert nach Calcitsättigung	203	1111101/1	7,14	DIN 38404-C10/3:12/12
Calcitsättigungsindex			0,27	DIN 38404-C10/3:12/12 DIN 38404-C10/3:12/12
Calcitlösekapazität	CaCO3	mg/l	-23,35	DIN 38404-C10/3:12/12
Kationenquotient	S0	1118/1	0,03	(K+Na)/(2*Ca+2*Mg)
Anionenquotient	S1		0,03	(Cl+NO3+2*SO4)/KS4,3
Gerieselquotient	S2		2,77	(C1+2*SO4)/NO3
Kupferquotient	S3		38,71	KS4,3/SO4
Kuhterduotietti	SS		30,/1	K07,5/507

2 / 12

Beurteilung des Korrosionsverhaltens gegenüber Installationsmaterialien

Erläuterungen

In den folgenden Auswertetabellen sind die Einheiten der Messgrößen unterdrückt. Die Messgrößen haben die Einheiten wie sie in der Analysenergebnisstabelle angegebenen sind, also meist mg/l oder mmol/l. Bei den einzelnen Korrosionsarten sind Bedingungen für anzustrebenden Zuständen aufgeführt. Das sind diejenigen Bedingungen, bei denen keine Korrosion auftritt oder bei denen das Wasser eine wünschenswerte Beschaffenheit aufweist. Die einzelnen Klauseln einer Bedingung müssen alle gleichzeitig erfüllt sein (und-Verknüpfung).

Korrosive oder andere unerwünschte Zustände sind rot markiert.

Der Beurteilung liegen neben eigenen Erfahrungen unter anderem folgende Normen zugrunde. DIN 50930-6: Korrosion metallener Werkstoffe im Innern von Rohrleitungen, Behältern und Apparaten bei Korrosionsbelastung durch Wässer – Teil 6: Bewertungsverfahren und Anforderungen hinsichtlich der hygienischen Eignung in Kontakt mit Trinkwasser (Okt. 2013)

EN 12502: Korrosionsschutz metallischer Werkstoffe. Hinweise zur Abschätzung der Korrosionswahrscheinlichkeit in Wasserverteilungs- und -speichersystemen

Teil 1: Allgemeines (2004)

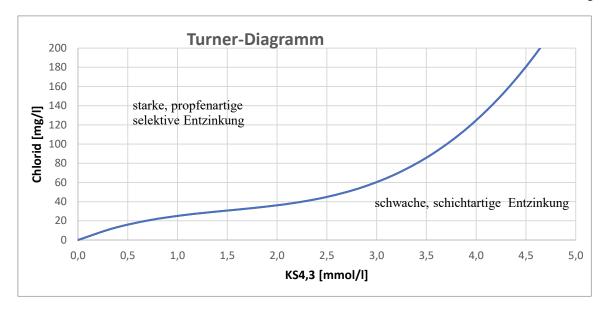
Teil 2: Einflussfaktoren für Kupfer und Kupferlegierungen (2004)

Teil 3: Einflussfaktoren für schmelztauchverzinkte Eisenwerkstoffe (2004)

Teil 4: Einflussfaktoren für nichtrostende Stähle (2004)

Teil 5: Einflussfaktoren für Gusseisen, unlegierte und niedriglegierte Stähle (2004)

Wasserbeschaffenheit


	Bedingungen für	Ergebnis
		Grund
	Zwww	0.44.4
		Calcium-Hydrogencabonat
6,25		HCO3 = 6.25 mval/l
		Ca = 3,695 mval/l
4,17		
		hart
3 34	< 1.5 weich	******
2,27		
	- 2,5 Hart	I
ichgewicht		kalkabscheidend
0,27	-0,2 bis +0,2	Calcitsättigungsindex > + 0,2)
?		oxidiertes Wasser
		sauerstoffreich
	O2 < 1	hohe Redoxspannung
		Nitrat
		kein Nitrit
	$1 \le O2 < 4$	kein Ammonium
		kein gelöstes Eisen
< 0,0008	oxidiert : O2 > 4	kein gelöstes Mangan
		Grenzwerte bei hier untersuchten
•		Dayam stayn singahaltan
e 630	I F < 2700	Parametern eingehalten.
630	LF < 2790	Parametern eingehalten.
630 7,42	pH 6,5-9,5	Parametern eingehalten.
630 7,42 < 0,9	pH 6,5-9,5 TOC < 2	Parametern eingehalten.
630 7,42 < 0,9 10,7	pH 6,5-9,5 TOC < 2 Cl < 250	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010 14,0	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010 14,0 15,5	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010 14,0 15,5 < 0,02	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010 14,0 15,5 < 0,02 4,17	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010 14,0 15,5 < 0,02 4,17 < 0,010	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010 14,0 15,5 < 0,02 4,17 < 0,010 < 0,0008	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010 14,0 15,5 < 0,02 4,17 < 0,010 < 0,0008 < 0,010	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05 Al < 0,2	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010 14,0 15,5 < 0,02 4,17 < 0,010 < 0,0008 < 0,010 0,0001	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05 Al < 0,2 As < 0,01	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010 14,0 15,5 < 0,02 4,17 < 0,010 < 0,0008 < 0,010 0,0001 0,0005	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05 Al < 0,2 As < 0,01 Pb < 0,01	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010 14,0 15,5 < 0,02 4,17 < 0,010 < 0,0008 < 0,010 0,0001 0,0005 < 0,0002	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05 Al < 0,2 As < 0,01 Pb < 0,01 Cr < 0,025	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010 14,0 15,5 < 0,02 4,17 < 0,010 < 0,0008 < 0,010 0,0001 0,0005 < 0,0002 0,0002	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05 Al < 0,2 As < 0,01 Pb < 0,01 Cr < 0,025 Ni < 0,02	Parametern eingehalten.
630 7,42 < 0,9 10,7 < 0,010 14,0 15,5 < 0,02 4,17 < 0,010 < 0,0008 < 0,010 0,0001 0,0005 < 0,0002	pH 6,5-9,5 TOC < 2 Cl < 250 NO2 < 0,5 NO3 < 50 SO4 < 250 NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05 Al < 0,2 As < 0,01 Pb < 0,01 Cr < 0,025	Parametern eingehalten.
	10,7 14,0 15,5 73,9 36,4 0,9 4,17 3,34	wünschenswerten Zustand

Alle Metalle

relevante Messwerte		Bedingungen für wünschenswerten	Ergebnis
		Zustand	Grund
Säurekorrosion			unwahrscheinlich
pH-Wert	7,42	pH > 7 oder	nicht sauer
Basenkapazität	0,56	KB8,2 < 0,1	
Chlorid	10,7		
Nitrit	< 0,010		
Nitrat	14,0		
Sulfat	15,5		
Carboxylate (<c3)< td=""><td></td><td></td><td></td></c3)<>			
Korrosionsprodukte			nicht vorhanden
Aluminium	< 0,010	A1 < 0,01	
Blei	0,0005	Pb < 0,01	
Chrom	< 0,0002	Cr < 0.01	
Eisen	< 0,010	Fe < 1	
Kupfer	0,0064	Cu < 0,01	
Nickel	0,0002	Ni < 0.01	
Zink	0,0030	Zn < 0.01	
		1	

Kupferwerkstoffe (Kupfer, Messing, Bronze, Rotguss)

relevante Messwerte		Bedingungen für	Ergebnis	
		wünschenswerten		
		Zustand	Grund	
gleichmäßige Flächenko	rrosion		wahrscheinlich	
pH-Wert	7,42	pH > 7,5	pH <= 7.5	
Säurekapazität	6,25	KS > 1		
	< 0,9	NH4 < 1		
	< 0,02			
	,-			
		I	1	
Lochkorrosion Typ 1 (Ka	altwasser	•)	wahrscheinlich	
Säurekapazität	6,25	KS4,3 > 1		
Chlorid	10,7	C1 > NO3 + 2*SO4	$C1/35 \le NO3/62 + SO4/48$	
Nitrat	14,0	abfiltr. Stoffe < 1	C1/33 \ 1\03/02 \ BO4/40	
Sulfat	15,5	aomi. Stone 🔻		
	< 1,0			
Feststoffe	-1,0			
resisione				
		I	I	
I I. I	:0	< 6000		
Lochkorrosion Typ 2 (He			unwahrscheinlich	
pH-Wert	7,42	pH > 7,0 oder	pH > 7,0	
Säurekapazität	6,25	$KS_{4,3} > 1.5$ oder	KS4,3 > 1,5	
Kupferquotient (S3)	38,71	S3 > 1,5	S3 > 1,5	
			•	
	. ,			
selektive Korrosion (Entz			unwahrscheinlich	
Säurekapazität	6,25	KS4,3 > 1 oder	unwahrscheinlich KS4,3 > 1Cl < Turner(KS4,3)	<u> </u>
				<u> </u>
Säurekapazität	6,25	KS4,3 > 1 oder		
Säurekapazität	6,25	KS4,3 > 1 oder		<u> </u>
Säurekapazität Chlorid Bimetallkorrosion	6,25 10,7	KS4,3 > 1 oder Cl < Turner(KS _{4,3})		_
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität	6,25	KS4,3 > 1 oder	KS4,3 > 1Cl < Turner(KS4,3)	<u> </u>
Säurekapazität Chlorid Bimetallkorrosion	6,25 10,7	KS4,3 > 1 oder Cl < Turner(KS _{4,3})	KS4,3 > 1Cl < Turner(KS4,3) unwahrscheinlich	<u> </u>
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität	6,25 10,7	KS4,3 > 1 oder Cl < Turner(KS _{4,3})	KS4,3 > 1Cl < Turner(KS4,3) unwahrscheinlich	
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid	6,25 10,7 6,25 10,7	KS4,3 > 1 oder Cl < Turner(KS _{4,3})	KS4,3 > 1Cl < Turner(KS4,3) unwahrscheinlich	<u> </u>
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat	6,25 10,7 6,25 10,7 14,0	KS4,3 > 1 oder Cl < Turner(KS _{4,3})	KS4,3 > 1Cl < Turner(KS4,3) unwahrscheinlich	<u> </u>
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat Sulfat	6,25 10,7 6,25 10,7 14,0 15,5	KS4,3 > 1 oder Cl < Turner(KS _{4,3})	KS4,3 > 1Cl < Turner(KS4,3) unwahrscheinlich	<u> </u>
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat Sulfat	6,25 10,7 6,25 10,7 14,0 15,5	KS4,3 > 1 oder Cl < Turner(KS _{4,3})	KS4,3 > 1Cl < Turner(KS4,3) unwahrscheinlich	<u> </u>
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat Sulfat Anionenquotient (S1)	6,25 10,7 6,25 10,7 14,0 15,5	KS4,3 > 1 oder Cl < Turner(KS _{4,3})	KS4,3 > 1Cl < Turner(KS4,3) unwahrscheinlich S1 < 1	<u> </u>
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat Sulfat Anionenquotient (S1) Spannungsrisskorrosion	6,25 10,7 6,25 10,7 14,0 15,5 0,14	KS4,3 > 1 oder Cl < Turner(KS _{4,3})	unwahrscheinlich S1 < 1 unwahrscheinlich	<u> </u>
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat Sulfat Anionenquotient (S1) Spannungsrisskorrosion Ammonium	6,25 10,7 6,25 10,7 14,0 15,5 0,14	KS4,3 > 1 oder Cl < Turner(KS _{4,3}) S1 < 1 NH ₄ < 600	unwahrscheinlich S1 < 1 unwahrscheinlich wenig Ammonium, Nitrit, Nitrat	•
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat Sulfat Anionenquotient (S1) Spannungsrisskorrosion Ammonium Nitrit	6,25 10,7 14,0 15,5 0,14 <0,02 <0,010	KS4,3 > 1 oder Cl < Turner(KS _{4,3}) S1 < 1 NH ₄ < 600 NO ₂ < 300	unwahrscheinlich S1 < 1 unwahrscheinlich	•
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat Sulfat Anionenquotient (S1) Spannungsrisskorrosion Ammonium	6,25 10,7 6,25 10,7 14,0 15,5 0,14	KS4,3 > 1 oder Cl < Turner(KS _{4,3}) S1 < 1 NH ₄ < 600	unwahrscheinlich S1 < 1 unwahrscheinlich wenig Ammonium, Nitrit, Nitrat	•
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat Sulfat Anionenquotient (S1) Spannungsrisskorrosion Ammonium Nitrit	6,25 10,7 14,0 15,5 0,14 <0,02 <0,010	KS4,3 > 1 oder Cl < Turner(KS _{4,3}) S1 < 1 NH ₄ < 600 NO ₂ < 300	unwahrscheinlich S1 < 1 unwahrscheinlich wenig Ammonium, Nitrit, Nitrat	•
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat Sulfat Anionenquotient (S1) Spannungsrisskorrosion Ammonium Nitrit Nitrat	6,25 10,7 14,0 15,5 0,14 < 0,02 < 0,010 14,0	KS4,3 > 1 oder Cl < Turner(KS _{4,3}) S1 < 1 NH ₄ < 600 NO ₂ < 300 NO ₃ < 400	unwahrscheinlich S1 < 1 unwahrscheinlich wenig Ammonium, Nitrit, Nitrat (keine Nitritbildung)	<u> </u>
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat Sulfat Anionenquotient (S1) Spannungsrisskorrosion Ammonium Nitrit Nitrat Beeinflussung der Trinkt	6,25 10,7 14,0 15,5 0,14 < 0,02 < 0,010 14,0	KS4,3 > 1 oder Cl < Turner(KS _{4,3}) S1 < 1 NH ₄ < 600 NO ₂ < 300 NO ₃ < 400	unwahrscheinlich S1 < 1 unwahrscheinlich wenig Ammonium, Nitrit, Nitrat (keine Nitritbildung)	<u> </u>
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat Sulfat Anionenquotient (S1) Spannungsrisskorrosion Ammonium Nitrit Nitrat Beeinflussung der Trinkt pH-Wert	6,25 10,7 14,0 15,5 0,14 < 0,02 < 0,010 14,0 wasserque 7,42	$KS4,3 > 1 \text{ oder}$ $C1 < Turner(KS_{4,3})$ $S1 < 1$ $NH_4 < 600$ $NO_2 < 300$ $NO_3 < 400$ $A = 100$ A	unwahrscheinlich S1 < 1 unwahrscheinlich wenig Ammonium, Nitrit, Nitrat (keine Nitritbildung) unwahrscheinlich pH >= 7,4	<u> </u>
Säurekapazität Chlorid Bimetallkorrosion Säurekapazität Chlorid Nitrat Sulfat Anionenquotient (S1) Spannungsrisskorrosion Ammonium Nitrit Nitrat Beeinflussung der Trinkt pH-Wert	6,25 10,7 14,0 15,5 0,14 < 0,02 < 0,010 14,0	KS4,3 > 1 oder Cl < Turner(KS _{4,3}) S1 < 1 NH ₄ < 600 NO ₂ < 300 NO ₃ < 400	unwahrscheinlich S1 < 1 unwahrscheinlich wenig Ammonium, Nitrit, Nitrat (keine Nitritbildung)	•

Flächenkorrosion führt zu gleichmäßigen, dünnen, braunen oder grünen Deckschichten und selten zu Schäden.

Bei Lochkorrosion vom Typ 1 in Kaltwasser entstehen auf der Innenseite halbkugelförmige Mulden oder Pusteln mit nadelstichartigen Löchern nach außen. Neben einer ungünstigen Wasserzusammensetzung sind Ablagerungen, kohlenstoffhaltige Filme oder Oxidfilme häufig Ursache von Lochfraß. Tritt Lochfraß 1cm neben einer Hartlot- oder überhitzten Weichlotstelle auf, so ist die Ursache in diesem Fall verkohltes Ziehfett, welches vom Herstellungsprozess des Cu-Rohres dessen Oberfläche belegt. Cu-Rohre DIN EN 1057 enthalten weniger als 0,2 mg/dm² Kohlenstoff, solche nach DVGW-GW 392 oder RAL-RG 641/1-Güte nur 0,1 mg/dm².

Lochkorrosion vom Typ 2 tritt im Warmwasser auf. Sie entsteht bei pH-Werten unter 7 sowie niedrigem Hydrogencarbonat- und hohem Sulfatgehalt.

Die Anfälligkeit für eine selektive Entzinkung von Messing hängt von der Legierungszusammensetzung ab. Wasserseitig wird sie durch wenig Hydrogencarbonat und viel Chlorid gefördert. Dabei treten weiße Zink-Korrosionsprodukte auf und das Kupfer verbleibt in poröser, schwammartiger Form.

Für Spannungskorrosion ist vor allem Messing anfällig. Sie tritt allerdings nur bei erheblichen Gehalten an Ammoniak oder Nitrit auf, die in natürlichen Wässern nicht vorkommen. Allerdings kann Nitrat unter Ablagerungen oder in Spalten reduziert werden, so dass lokal relevante Konzentrationen entstehen.

Bimetallkorrosion tritt normalerweise nicht auf, da Kupfer ein edles Metall ist. Bei Verbindungen von Kupfer mit Edelstahl können Probleme bei großen Stahl- und kleinen Kupferflächen entstehen. Die Bimetallkorrosion wird durch aktivierende Anionen (Chlorid, Nitrat, Sulfat...) gefördert und durch inhibierende Anionen wie Hydrogencarbonat gebremst.

Schmelztauchverzinkte Eisenwerkstoffe

relevante Messwerte		Bedingungen für wünschenswerten	Ergebnis
			Grund
Deckschichtbildung			begünstigt <u> </u>
Basenkapazität	0,56	KB < 0,7	KB8,2 < 0,7 mmol
Säurekapazität	6,25	KS > 1	KS4,3 > 1 mmol/l
Phosphor	< 0,028	Inhibitoren	keine Loch- oder Muldenkorrosion
Kieselsäure	5,09	keine Mulden-	Kieselsäure vorhanden (Inhibitor)
TOC	< 0,9	oder Lochkorrosion	
starke gleichmäßige F	lächenkorr	osion	unwahrscheinlich
pH-Wert	7,42	pH ≥7	pH >=7
		Deckschichtbildung	Deckschichtbildung
16 11 17 11			
Mulden- und Lochkor		Q1 .0.5	sehr unwahrscheinlich
Säurekapazität	6,25	S1 < 0,5	Anionenquotient < 0,5
Anionenquotient (S1)	0,14	KS > 2	KS4,3 > 2 mmol/l und $Ca > 20$ mg/l
Calcium	73,9	Ca > 20	
selektive Zinkkorrosio	•		unwahrscheinlich
Gerieselquotient (S2)	2,77	S2 < 1 oder	NO3 < 19
Nitrat		S2 < 1 oder $S2 > 3$ oder	NO3 < 19
Murai	14,0	S2 > 3 oder Nitrat < 19	
		Nitrat < 19	
		I	
elektrochemische Korr	asian bai 1	Ais ahin stallation	unwahrscheinlich
Leitfähigkeit	630	Cu < 0,063	Cu < 0,063
Kupfer	0,0064	oder	Deckschichtbildung
Kupier	0,0004	Deckschichtbildung	Decksementondung
		oder	
		LF < 50	
		l	
Beeinflussung der Trii	nkwassoran	ualität	möglich
Deenjiussung der Itti		uuuu	mozucn
Rasenkanazität			
Basenkapazität Anionenquotient (S1)	0,56 0,14	$KB_{8,2} \le 0,2$ $S1 \le 1$	KB8,2 > 0,2

Unter günstigen Bedingungen findet in verzinkten Rohren eine geringe gleichmäßige Flächenkorrosion statt und bildet eine festhaftende Kalk-Zink-Rost-Schutzschicht aus. Hierzu ist auch ein ausreichend hoher Sauerstoffgehalt im Wasser notwendig (> 6mg/l).

Ist das Wasser stark kalkaggressiv, kann sich keine Kalkrostschutzschicht ausbilden und eine bereits bestehende wird aufgelöst. Die freiliegende Zinkschicht wird zerstört, das Grundmaterial korrodiert.

Eine Anhäufung von Messingbauteilen und stagnierender Betrieb ist häufig Ursache von Lochkorrosion (im Bereich von einem Meter hinter den Bauteilen). Kupferwerte > 0,1 mg/cm² in der Deckschicht um die Schadensstelle ist ein eindeutiges Zeichen für elektrochemische Korrosion.

Nichtrostende Stähle, Mo-frei

	Bedingungen für wünschenswerten	Ergebnis
	Zustand	Grund
ser		unwahrscheinlich
0,7	C1 < 213	Chlorid < 213
asser		unwahrscheinlich
0,7	C1 < 53	Chlorid < 53
	l	I
		_
ser	T	unwahrscheinlich
0,7	Cl << 213	Chlorid < 53
	I	I
		_
	T	unwahrscheinlich
0,7	Cl < 53	Chlorid < 53
		I
serschnu	tt-Korrosion von	, , , , ,
0.7	L c1	unwahrscheinlich
.0,7	CI < 213	Chlorid < 213
3 ()	0,7 sser 0,7 er 0,7	wünschenswerten Zustand

Lochkorrosion ist eine lokale, in die Tiefe gehende Korrosion. Sie kann ausgelöst werden durch mechanische Beschädigung der Oberfläche oder durch Partikel von un- oder niedriglegiertem Eisen (Lokalelementbildung mit Rostbildung und Anreicherung von Chloridionen).

Spaltkorrosion tritt in Spalten unter 0,5 mm auf. Es bilden sich Konzentrationselemente mit nachfolgender Lochkorrosion im Spalt. Spalten können an Rohrverbindungen, an Dichtungen oder unter Ablagerungen vorhanden sein. Die Korrosion wird verstärkt durch stagnierendes Wasser und tiefe Spalten.

Messerschnittkorrosion tritt an Hartlötverbindungen von Edelstahl mit Silberlot auf. Selektive Korrosion an der Phasengrenze führt schließlich zu einer Lösung der Lötverbindung. Die Dauer bis zur Schadensausbildung kann bei mehreren Jahren liegen.

Spannungsrisse sind nehmen ihren Ausgang von anderen Korrosionsstellen und entstehen dann unter mechanischer Belastung.

Gusseisen, unlegierte und niedrig legierte Stähle

		Bedingungen für	Ergebnis
		wünschenswerten	
		Zustand	Grund
Schutzschichtbildung	und		
gleichmäßige Flächen	korrosion		zu erwarten
Sauerstoff	8,3	O2 > 3,2	O2 > 3,2
pH-Wert	7,42	pH > 7	pH > 7
Säurekapazität	6,25	KS4,3 > 2	KS4,3 > 2
Calcium	73,9	Ca > 40	Ca > 40
Lochkorrosion			unwahrscheinlich
Anionenquotient (S1)	0,14	S1 < 1	S1 < 1
TOC	< 0,9	TOC < 5	geringer organischer
			Kohlenstoffgehalt
selektive Korrosion			begünstigt; Spongiose zu erwarten
pH-Wert	7,42	pH > 7	KB8,2 >= 0,1
Basenkapazität	0,56	KB < 0,1	
Bimetallkorrosion			keine Anhaltspunkte
Leitfähigkeit	630	LF < 100 oder	viel Calciumhydrogencarbonat
Säurekapazität	6,25	$Ca(HCO_3)_2 > 1 \text{ mmol/l}$	
Calcium	73,9		

Spongiose kann auftreten, wenn im Material eine ungleichmäßige Kohlenstoffverteilung vorliegt, z.B. an Graphitschichten in Grauguss oder an Schweißnähten. In diesem Fall wird der metallische Anteil herausgelöst, während das schwarze Graphitskelett schwammartig erhalten bleibt.

Bei Wässern ohne Luftzutritt (Kühl- oder Heizungswässer in geschlossenen Systemen) stellt sich ein pH-Wert > 8,5 ein und der im Füllwasser vorhandene Sauerstoff wird vollständig verbraucht. Dann findet keine Korrosion statt.

Aluminium

relevante Messwerte		Bedingungen für wünschenswerten Zustand	Ergebnis Grund
Säurekorrosion		,	nein
pH-Wert	7,42	pH >= 4,5	pH >= 4.5
Basenkorrosion			nein
pH-Wert	7,42	pH < 8,5	pH < 8,5
		1	Ţ
chloridinduzierte Kori	rosion		unwahrscheinlich
Chlorid	10,7	Chlorid < 35	wenig Chlorid
Bimetallkorrosion			keine Anhaltspunkte
Kupfer	0,0064	Cu < 0,063	keine erhöhten Gehalte edlerer
Chrom	< 0,0002	Cr < 0.05	Metalle
Nickel	0,0002	Ni < 0,05	

Manche Aluminiumlegierungen sind sehr empfindlich gegen Chloride (Lochfraß).

Asbestzement

relevante Messwerte		Bedingungen für wünschenswerten Zustand	Ergebnis Grund	
Ablösung von Fasern			unwahrscheinlich	
Ablösung von Fasern Calcitsättigungsindex	0,27	nicht kalkaggressiv	unwahrscheinlich nicht kalkaggressiv	•
	0,27 7,42	nicht kalkaggressiv (pH ≥ 7 oder		•

Jessy-Lee Fournés M.Sc. Biochemie

Bemerkungen zu den einzelnen Parametern

Bemerkungen zu den Parametern
bei >30°C tritt eine Potentialumkehr bei Fe/Zn ein
hohe Salzgehalte beeinträchtigen den Geschmack und fördern die
elektrochemische Korrosion
pH unter 7: Säurekorrosion, Leitungsmetalle werden gelöst
hoher O ₂ -Gehalt begünstigt die Ausbildung eine Kalk-Zink-
Rostschutzschicht
Redoxverhältnisse oxidierend
oder reduzierend (erhöhte Löslichkeit von Fe, Mn)
gelöstes Kohlendioxid, Maß für den Säuregehalt
Hydrogencarbonat, Maß für die Alkalität und Puffervermögen
TOC hat inhibitorische Wirkung bei Lochfraß-I (Cu),
im TW unerwünscht, Nahrungsgrundlage für Bakterien
Maß für organische Inhaltsstoffe, < 8/m bei UV-Desinfektion
Färbung
Voraussetzung für Kalkablagerungen und Schutzschichtbildung
Waschmitteldosierung
starker Oxidationsmittel, die Analysemethode erfasst auch andere
ungelöste Feststoffe, Ablagerungen, häufig Ursache für Lokalelemente
natürlicher Korrosionsinhibitor
fördert häufig Lochkorrosion (insbesondere bei Edelstahl)
siehe Korrosionsbeurteilung
Korrosionsinhibitor, Nährstoff für Algenbildung
siehe Korrosionsbeurteilung
Cu-Amminkomplex, Redoxverhältnisse, SpRK bei Cu
Härte, Kesselstein
Härte
Korrosionsprodukt oder gelöst in reduziertem Wasser
meist geogen in reduzierten Wässern
Korrosionsprodukt, Fällungsmittel
toxisch, carcinogen, meist geogenen Ursprungs oder aus Verzinkung
toxisch, meist aus Verzinkung
toxisch, meist aus Verzinkung toxisch, meist aus Installationsmaterial (Verzinkung, Lote)
toxisch, meist aus Installationsmaterial (verzinkung, Lote)
toxisch, meist aus Leitungswerkstoffen
toxisch, meist aus Installationsmaterial
meist aus Leitungswerkstoffen
≈ KB _{8,2} Kohlensäure, meist unerwünscht
≈ KS _{4,3} günstig für Deckschichtbildung
kann berechnet werden aus LF, Ca, KS _{4,3} , KB _{8,2} und Temperatur
Kalkkohlensäuregleichgewicht, sollte etwa gleich dem pH-Wert sein
pH - pH-Gleichgewicht
<5; bei Mischung mehrerer Wässer <10 mg/l CaCO ₃ (TrinkwV Anl.3)
$S1 = (C1 + NO_3 + 2*SO_4) / KS_{4,3}$
S0 = (Na + K) / (2*Ca + 2*Mg)
$S2 = (C1 + 2*SO_4) / NO_3$
$S3 = KS_{4,3} / SO_4$

Institut für Umweltanalytik: Zulassungen und Zertifizierung Akkreditiertes Prüflabor DAkkS D-PL-21277-01-00

Private Sachverständige für die Wasserwirtschaft Untersuchungsstelle nach § 40 TrinkwV Zertifiziertes Prüflabor, AQS Bayern, AQS-Nr. 05/008/96

Zulassung nach § 44 Infektionsschutzgesetz

Institut für Umweltanalytik · Oberndorfer Str.1· 91096 Möhrendorf

Zweckverband zur Wasserversorgung Betzensteingruppe Herr Otto Alter Brunnen 2 91282 Betzenstein Baucis Funke Oberndorfer Straße 1 91096 Möhrendorf 09131 41071 kontakt@funkelabor.de 30. Juni 2025

25.06204 Quelle Wolfsberg

Rohwasseruntersuchung gemäß Eigenüberwachungsverordnung (EÜV)

Probenkennzeichnung

Bezeichnung : Quelle Wolfsberg Probenart : Trinkwasser

Untersuchungsumfang : Volluntersuchung nach EÜV Untersuchungszeitraum : 10.06.2025 bis 27.06.2025

Objektkennzahl : 4120 6333 00007 Wasserversorgungsunternehmen : ZV Betzensteingruppe

Probenahme

Entnahmestelle : Pumpwerk Wolfsberg, PN-Hahn Leitung

Probenehmer : J.-L. Fournes, IfU
Probenahmeort : Wolfsberg
Probenahmedatum : 10.06.25
Probenahmezeit : 8:42
Probenahmetechnik : a

Vor-Ort-Parameter : Färbung, Trübung, Geruch, Wassertemperatur, pH-Wert,

Leitfähigkeit, Sauerstoff

Analysenergebnisse

Thatysener gebinsse			
Parameter	Symbol	Einheit	Messwert
Förbung.			farblos
Färbung Trübung			klar
Geruch			geruchlos
Wassertemperatur		°C	10,4
pH-Wert		C	7,34
Leitfähigkeit (bei 25°C)		μS/cm	622
Sauerstoff	O_2	mg/l	8,3
Säurekapazität	$KS_{4,3}$	mmol/l	6,20
Basenkapazität	$KB_{8,2}$	mmol/l	0,67
DOC	C C	mg/l	< 0,9
spektr. Absorptionskoeff. 436nm	C	1/m	< 0,1
spektr. Absorptionskoeff. 254nm		1/m	0,79
Kieselsäure	SiO_2	mg/l	4,77
Calcium	Ca	mg/l	72,4
Magnesium	Mg	mg/l	35,4
Kalium	K	mg/l	0,8
Natrium	Na	mg/l	4,07
Mangan	Mn	mg/l	< 0,0008
Eisen	Fe	mg/l	< 0,010
Ammonium	$\mathrm{NH_4}^+$	mg/l	< 0,02
Aluminium	Al	mg/l	< 0,010
Arsen	As	mg/l	0,0001
Chlorid	Cl-	mg/l	10,9
Nitrat	NO_3^-	mg/l	13,9
Nitrit	NO_2^-	mg/l	< 0,01
Sulfat	SO_4^{2-}	mg/l	15,6
Phosphat (ortho)	PO_4	mg/l	< 0,014
Koloniezahl bei 22 °C	KBE	1/ml	37
Koloniezahl bei 36 °C	KBE	1/ml	0
Escherichia coli	KBE	1/100ml	0
Coliforme Keime	KBE	1/100ml	0
Pflanzenschutzmittel*)			
AMPA		μg/l	
2,4-D		μg/l	< 0,02
2-Hydroxyatrazin		μg/l	< 0,02
Aclonifen		μg/l	< 0,02
Amidosulfuron		μg/l	< 0,02
Atrazin		μg/l	< 0,02
Azoxystrobin		μg/l	< 0,02
Beflubutamid		μg/l	< 0,02
Bentazon		μg/l	< 0,02
Bixafen		μg/l	< 0,02
Boscalid		μg/l	< 0,02
Bromacil		μg/l	< 0,02
Bromoxynil		μg/l	< 0,02
Carbendazim		μg/l	< 0,02
Carbetamid		μg/l	< 0,02
Chloridazon		μg/l	< 0,02
Chloridazon, desphenyl-B		μg/l	
Chloridazon, methyldesphenyl-B	1	μg/l	
Chlortoluron		μg/l	< 0.02
Clodinafop-propargyl		μg/l	< 0.02
Clomazone		μg/l	< 0.02
Clopyralid		μg/l	< 0.05
Clothianidin		μg/l	< 0.02
Cyflufenamid		μg/l	< 0.02
Cyproconazol		μg/l	< 0.02
Desethyl Designment latrazin		μg/l	< 0.02
Desethyl-Desisopropylatrazin		μg/l	< 0,02

Parameter	Symbol	Einheit	Messwert
Desethylsimazin		μg/l	< 0,02
Desethylterbuthylazin		μg/l	< 0,02
Dicamba		μg/l	< 0,05
Dichlorprop		μg/l	< 0,02
2,6-Dichlorbenzamid		μg/l	,
Difenoconazol		μg/l	< 0,02
Diflufenican		μg/l	< 0,02
Dimefuron		μg/l	< 0,02
Dimethachlor		μg/l	< 0,02
Dimethenamid		μg/l	< 0,02
Dimethylsulfamid		μg/l	
Dimethoat		μg/l	< 0,02
Dimethomorph		μg/l	< 0,02
Dimoxystrobin		μg/l	< 0,02
Diuron		μg/l	< 0,02
Epoxiconazol		μg/l	< 0,02
Ethidimuron		μg/l	< 0,02
Ethofumesat		μg/l	< 0,02
Fenoxaprop		μg/l	< 0,02
Fenpropidin		μg/l	< 0,02
Fenpropimorph		μg/l	< 0,02
Flazasulfuron		μg/l	< 0,02
Flonicamid		μg/l	< 0,02
Florasulam		μg/l	< 0,02
Fluazifop		μg/l	< 0,02
Fluazinam		μg/l	< 0,02
Fludioxonil		μg/l	< 0,02
Flufenacet		μg/l	< 0,02
Flumioxazin		μg/l	< 0,02
Fluopicolide		μg/l	< 0,02
Fluopyram		μg/l	< 0,02
Flupyrsulfuron-methyl		μg/l	< 0,02
Fluroxypyr		μg/l	< 0,02
Flurtamon		μg/l	< 0,02
Flusilazol		μg/l	< 0,02
Fluxapyroxad		μg/l	< 0,02
Foramsulfuron		μg/l	< 0,02
Glyphosat		μg/l	< 0,05
Haloxyfop		μg/l	< 0,02
Imazalil		μg/l	< 0,02
Imidacloprid		μg/l	< 0,02
Iodosulfuron-methyl		μg/l	< 0,02
Ioxynil		μg/l	< 0,02
Iprodion		μg/l	< 0,02
Isoproturon		μg/l	< 0,02
Isopyrazam		μg/l	< 0,02
Isoxaben		μg/l	< 0,02
Kresoxim-methyl		μg/l	< 0,02
Lenacil		μg/l	< 0,02
Mandipropamid		μg/l	< 0,02
MCPA		μg/l	< 0,02
Mecoprop		μg/l	< 0,02
Mesosulfuron-methyl		μg/l	< 0,02
Mesotrion		μg/l	< 0,02
Metalaxyl		μg/l μg/l	< 0,02
Metamitron		μg/l μg/l	< 0,02
Metazachlor		μg/l μg/l	< 0,02
Metazachlor BH479-4			· 0,02
Metazachlor BH479-8		μg/l	
Metconazol		μg/l	< 0,02
Methiocarb		μg/l	< 0,02
IVICUIIOCAI U		μg/l	\ U,UJ

Parameter	Symbol	Einheit	Messwert
Methoxyfenozid		μg/l	< 0,02
Metobromuron		μg/l	< 0,02
Metolachlor		μg/l	< 0,02
Metosulam		μg/l	< 0.02
Metribuzin		μg/l	< 0,02
Metsulfuron-methyl		μg/l μg/l	< 0,02
Myclobutanil		μg/l	< 0,02
Napropamid		μg/l μg/l	< 0,02
Nicosulfuron		μg/l μg/l	< 0,02
Penconazol		μg/l μg/l	< 0,02
Pendimethalin			< 0,02
Pethoxamid		μg/l	< 0,02
Picolinafen		μg/l	•
		μg/l	< 0.02
Picoxystrobin Pinoxaden		μg/l	< 0.02
Pirimicarb		μg/l	< 0.02
		μg/l	< 0.02
Prochloraz		μg/l	< 0.02
Propamocarb		μg/l	< 0.02
Propaquizafop		μg/l	< 0.02
Propazin		μg/l	< 0.02
Propiconazol		μg/l	< 0.02
Propoxycarbazon		μg/l	< 0.02
Propyzamid		μg/l	< 0.02
Proquinazid		μg/l	< 0,02
Prosulfocarb		μg/l	< 0,02
Prosulfuron		μg/l	< 0,02
Prothioconazol		μg/l	< 0,02
Pyrimethanil		μg/l	< 0,02
Pyroxsulam		μg/l	< 0,02
Quinmerac		μg/l	< 0,02
Quinoclamin		μg/l	< 0,02
Quinoxyfen		μg/l	< 0,02
Simazin		μg/l	< 0,02
Spiroxamine		μg/l	< 0,02
Sulcotrion		μg/l	< 0,02
Tebuconazol		μg/l	< 0,02
Tebufenozid		μg/l	< 0,02
Tebufenpyrad		μg/l	< 0,02
Terbuthylazin		μg/l	< 0,02
Tetraconazol		μg/l	< 0,02
Thiacloprid		μg/l	< 0,02
Thiamethoxam		μg/l	< 0,02
Thifensulfuron-methyl		μg/l	< 0,02
Topramezone		μg/l	< 0,02
Triadimenol		μg/l	< 0,02
Triasulfuron		μg/l	< 0,02
Tribenuron-methyl		μg/l	< 0,02
Triclopyr		μg/l	< 0,02
Trifloxystrobin		μg/l	< 0,02
Triflusulfuron-methyl		μg/l	< 0,02
Triticonazol		μg/l	< 0,02
Tritosulfuron		μg/l	< 0,02
Summe PBSM		μg/l	0

 $^{^{*)}\;}$ Analytik im Unterauftrag Analytik Institut Rietzler GmbH, Fürth

Beurteilung, ΕÜV

Es handelt sich um hartes Wasser vom Typ Calcium-Magnesium-Hydrogencarbonat.

Das Wasser ist über Jahre von gleichbleibender Beschaffenheit.

Pflanzenschutzmittel und deren Abbauprodukte sind nicht nachweisbar.

Frau B.Sc. Baucis Funke vom Bayer. Landesamt für Umwelt anerkannt unter der Nr. 05/0957/22 als privater Sachverståndiger in der Wasserwirtschaft für Elgenüberwachung

Institut für Umweltanalytik Baucis Funke
Akkreditiertes Prüflabor DAkkS D-PL-21277-01-00 Private Sachverständige für die Wasserwirtschaft Untersuchungsstelle nach § 40 TrinkwV Zertifiziertes Prüflabor, AQS Bayern, AQS-Nr. 05/008/96 Zulassung nach § 44 Infektionsschutzgesetz

Analysenmethoden

Parameter	Symbol	Einheit	Analysenmethode
Probenahme Mikrobiologie			DIN EN ISO 19458:06/12
Probenahme			DIN ISO 5667-5 (A14): 2011/02
Färbung			qualitativ
Trübung			qualitativ
Geruch			DIN EN ISO 1622-B3-C.06/10
Wassertemperatur		°C	bei der Probenahme
Leitfähigkeit (bei 25°C)		μS/cm	DIN EN 27888-C8:93/11
pH-Wert			DIN EN ISO 10523:12/04
Messtemperatur(pH)		°C	DIN 38404-C4:76/12
Sauerstoff	O_2	mg/l	DIN EN ISO 5814-G22:13/02
DOC	C	mg/l	DIN EN 1484-H3:97/08
Basenkapazität	$\mathrm{KB}_{8,2}$	mmol/l	DIN 38409-H7:05/12
Säurekapazität	$KS_{4,3}$	mmol/l	DIN 38409-H7:05/12
Chlorid	Cl-	mg/l	DIN EN ISO 10304-1-D20:09/07
Nitrat	NO_3^-	mg/l	DIN EN ISO 10304-1-D20:09/07
Sulfat	SO_4^{2-}	mg/l	DIN EN ISO 10304-1-D20:09/07
Calcium	Ca	mg/l	DIN EN ISO 17294-2: 17/01
Kalium	K	mg/l	DIN EN ISO 17294-2: 17/01
Magnesium	Mg	mg/l	DIN EN ISO 17294-2: 17/01
Natrium	Na	mg/l	DIN EN ISO 17294-2: 17/01
Koloniezahl bei 22 °C	KBE	1/ml	TrinkwV, §43 Abs. 3/1
Koloniezahl bei 36 °C	KBE	1/ml	TrinkwV, §43 Abs. 3/1
Escherichia coli	KBE	1/100ml	DIN EN ISO 9308-1:17/09
Coliforme Keime	KBE	1/100ml	DIN EN ISO 9308-1:17/09
PBSM		μg/l	DIN 38407-F36:14/09
			DIN ISO 16308:17/09
Summe PBSM		μg/l	Summe der nachgewiesenen